Department of Biological Science and Program in Neuroscience, The Florida State University, Tallahassee, Florida 32306, USA.
J Neurosci. 2013 Jan 30;33(5):1804-14. doi: 10.1523/JNEUROSCI.2910-12.2013.
Humans are largely dependent upon cone-mediated vision. However, death or dysfunction of rods, the predominant photoreceptor subtype, results in secondary loss of cones, remodeling of retinal circuitry, and blindness. The changes in circuitry may contribute to the vision deficit and undermine attempts at restoring sight. We exploit zebrafish larvae as a genetic model to specifically characterize changes associated with photoreceptor degenerations in a cone-dominated retina. Photoreceptors form synapses with two types of second-order neurons, bipolar cells, and horizontal cells. Using cell-specific reporter gene expression and immunolabeling for postsynaptic glutamate receptors, significant remodeling is observed following cone degeneration in the pde6c(w59) larval retina but not rod degeneration in the Xops:mCFP(q13) line. In adults, rods and cones are present in approximately equal numbers, and in pde6c(w59) mutants glutamate receptor expression and synaptic structures in the outer plexiform layer are preserved, and visual responses are gained in these once blind fish. We propose that the abundance of rods in the adult protects the retina from cone degeneration-induced remodeling. We test this hypothesis by genetically manipulating the number of rods in larvae. We show that an increased number and uniform distribution of rods in lor/tbx2b(p25bbtl) or six7 morpholino-injected larvae protect from pde6c(w59)-induced secondary changes. The observations that remodeling is a common consequence of photoreceptor death across species, and that in zebrafish a small number of surviving photoreceptors afford protection from degeneration-induced changes, provides a model for systematic analysis of factors that slow or even prevent the secondary deteriorations associated with neural degenerative disease.
人类在很大程度上依赖于视锥细胞介导的视觉。然而,视杆细胞(主要的光感受器亚型)的死亡或功能障碍会导致视锥细胞的继发性丧失、视网膜回路的重塑以及失明。回路的变化可能导致视力缺陷,并破坏恢复视力的尝试。我们利用斑马鱼幼虫作为遗传模型,专门研究与视锥细胞主导的视网膜中的光感受器变性相关的变化。光感受器与两种类型的二级神经元(双极细胞和水平细胞)形成突触。使用细胞特异性报告基因表达和突触后谷氨酸受体免疫标记,我们观察到在 pde6c(w59)幼虫视网膜中的视锥细胞变性后,明显的重塑现象,但在 Xops:mCFP(q13) 系中的视杆细胞变性后则没有。在成年鱼类中,视杆细胞和视锥细胞的数量大致相等,在 pde6c(w59)突变体中,谷氨酸受体表达和外丛状层的突触结构得以保留,这些曾经失明的鱼类获得了视觉反应。我们提出,成年鱼类中视杆细胞的丰富程度保护视网膜免受视锥细胞变性引起的重塑。我们通过遗传操纵幼虫中的视杆细胞数量来验证这一假设。我们发现,在 lor/tbx2b(p25bbtl)或 six7 形态发生素注射的幼虫中增加视杆细胞的数量和均匀分布,可以保护它们免受 pde6c(w59)诱导的继发性变化。这些观察结果表明,重塑是跨物种光感受器死亡的常见后果,并且在斑马鱼中,少量存活的光感受器可以防止变性引起的变化,为系统分析减缓甚至预防与神经退行性疾病相关的继发性恶化的因素提供了模型。