Suppr超能文献

斑马鱼视网膜中的新陈代谢。

Metabolism in the Zebrafish Retina.

作者信息

Jaroszynska Natalia, Harding Philippa, Moosajee Mariya

机构信息

Institute of Ophthalmology, University College London, London EC1V 9EL, UK.

Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK.

出版信息

J Dev Biol. 2021 Mar 15;9(1):10. doi: 10.3390/jdb9010010.

Abstract

Retinal photoreceptors are amongst the most metabolically active cells in the body, consuming more glucose as a metabolic substrate than even the brain. This ensures that there is sufficient energy to establish and maintain photoreceptor functions during and after their differentiation. Such high dependence on glucose metabolism is conserved across vertebrates, including zebrafish from early larval through to adult retinal stages. As the zebrafish retina develops rapidly, reaching an adult-like structure by 72 hours post fertilisation, zebrafish larvae can be used to study metabolism not only during retinogenesis, but also in functionally mature retinae. The interplay between rod and cone photoreceptors and the neighbouring retinal pigment epithelium (RPE) cells establishes a metabolic ecosystem that provides essential control of their individual functions, overall maintaining healthy vision. The RPE facilitates efficient supply of glucose from the choroidal vasculature to the photoreceptors, which produce metabolic products that in turn fuel RPE metabolism. Many inherited retinal diseases (IRDs) result in photoreceptor degeneration, either directly arising from photoreceptor-specific mutations or secondary to RPE loss, leading to sight loss. Evidence from a number of vertebrate studies suggests that the imbalance of the metabolic ecosystem in the outer retina contributes to metabolic failure and disease pathogenesis. The use of larval zebrafish mutants with disease-specific mutations that mirror those seen in human patients allows us to uncover mechanisms of such dysregulation and disease pathology with progression from embryonic to adult stages, as well as providing a means of testing novel therapeutic approaches.

摘要

视网膜光感受器是体内代谢最活跃的细胞之一,其消耗的葡萄糖作为代谢底物甚至比大脑还要多。这确保了在光感受器分化期间及之后有足够的能量来建立和维持其功能。这种对葡萄糖代谢的高度依赖在整个脊椎动物中都是保守的,包括从早期幼体到成年视网膜阶段的斑马鱼。由于斑马鱼视网膜发育迅速,在受精后72小时就达到类似成年的结构,斑马鱼幼体不仅可用于研究视网膜发生过程中的代谢,还可用于研究功能成熟视网膜的代谢。视杆和视锥光感受器与相邻的视网膜色素上皮(RPE)细胞之间的相互作用建立了一个代谢生态系统,该系统对它们各自的功能进行必要的调控,从而总体上维持健康的视力。RPE促进脉络膜血管系统向光感受器高效供应葡萄糖,而光感受器产生的代谢产物又为RPE的代谢提供燃料。许多遗传性视网膜疾病(IRD)会导致光感受器退化,要么直接由光感受器特异性突变引起,要么继发于RPE丧失,从而导致视力丧失。许多脊椎动物研究的证据表明,视网膜外层代谢生态系统的失衡会导致代谢功能衰竭和疾病发病机制。使用具有与人类患者相似的疾病特异性突变的斑马鱼幼体突变体,使我们能够揭示这种失调和疾病病理机制从胚胎期到成年期的进展情况,还提供了一种测试新型治疗方法的手段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d9/8006245/a3b26cd77fce/jdb-09-00010-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验