Kanaan-Izquierdo Samir, Ziyatdinov Andrey, Massanet Raimon, Perera Alexandre
Department of Software, EUETIB, Universitat Politecnica de Catalunya, Barcelona, Spain.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1254-7. doi: 10.1109/EMBC.2012.6346165.
In this paper we propose a generic approach to the multiview clustering problem that can be applied to any number of data views and with different topologies, either continuous, discrete, graphs, or other. The proposed method is an extension of the well-established spectral clustering algorithm to integrate the information from several data views in the partition solution. The algorithm, therefore, resolves a joint cluster structure which could be present in all views, which enables researchers to better resolve data structures in data fusion problems The application of this novel clustering approach covers an extended number of machine learning unsupervised clustering problems including biomedical analysis or machine vision.
在本文中,我们提出了一种通用方法来解决多视图聚类问题,该方法可应用于任意数量的数据视图,且适用于不同的拓扑结构,无论是连续的、离散的、图形的还是其他拓扑结构。所提出的方法是对成熟的谱聚类算法的扩展,以便在划分解决方案中整合来自多个数据视图的信息。因此,该算法解决了所有视图中可能存在的联合聚类结构,这使研究人员能够在数据融合问题中更好地解析数据结构。这种新颖的聚类方法的应用涵盖了大量机器学习无监督聚类问题,包括生物医学分析或机器视觉。