Peterson Erik J, Tyler Dustin J
Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH 44106, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1896-9. doi: 10.1109/EMBC.2012.6346323.
Infrared neural stimulation (INS) offers the potential to selectively activate very small populations of neurons. Before it will be possible to design efficient and effective INS interfaces, the mechanisms of INS need to be better understood. The presented study builds on work indicating that INS generates a significant capacitive current by the application of infrared light to cell membranes. A computational model is presented to investigate realistic spatial delivery of INS and to investigate whether axonal structure and ion channel composition are likely to facilitate INS activation through capacitive changes alone. Findings indicate that capacitance changes are unlikely to be the sole mechanism, because the determined thresholds to activation were higher than the capacitance changes observed in previously reported work [1].
红外神经刺激(INS)具有选择性激活极小神经元群体的潜力。在设计高效且有效的INS接口之前,需要更好地理解INS的机制。本研究基于此前的工作展开,这些工作表明,通过向细胞膜施加红外光,INS会产生显著的电容电流。本文提出了一个计算模型,以研究INS在实际空间中的传递情况,并探究轴突结构和离子通道组成是否仅通过电容变化就可能促进INS激活。研究结果表明,电容变化不太可能是唯一的机制,因为所确定的激活阈值高于先前报道工作中观察到的电容变化[1]。