Suppr超能文献

A modified multi-channel EMG feature for upper limb motion pattern recognition.

作者信息

Tsai An-Chih, Luh Jer-Junn, Lin Ta-Te

机构信息

Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 106, Taiwan.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:3596-9. doi: 10.1109/EMBC.2012.6346744.

Abstract

The EMG signal is a well-known and useful biomedical signal. Much information related to muscles and human motions is included in EMG signals. Many approaches have proposed various methods that tried to recognize human motion via EMG signals. However, one of the critical problems of motion pattern recognition is that the performance of recognition is easily affected by the normalization procedure and may not work well on different days. In this paper, a modified feature of the multi-channel EMG signal is proposed and the normalization procedure is also simplified by using this modified feature. To recognize motion pattern, we applied the support vector machine (SVM) to build the motion pattern recognition model. In training and validation procedures, we used the 2-DoF exoskeleton robot arm system to do the designed pose, and the multi-channel EMG signals were obtained while the user resisted the robot. Experiment results indicate that the performance of applying the proposed feature (94.9%) is better than that of conventional features. Moreover, the performances of the recognition model, which applies the modified feature to recognize the motions on different days, are more stable than other conventional features.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验