Suppr超能文献

迈向用于轮椅倾斜和后倾使用临床指导的智能系统。

Towards an intelligent system for clinical guidance on wheelchair tilt and recline usage.

作者信息

Fu Jicheng, Wiechmann Paul, Jan Yih-Kuen, Jones Maria

机构信息

University of Central Oklahoma, Edmond, OK 73034, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4648-51. doi: 10.1109/EMBC.2012.6347003.

Abstract

We propose to construct an intelligent system for clinical guidance on how to effectively use power wheelchair tilt and recline functions. The motivations fall into the following two aspects. (1) People with spinal cord injury (SCI) are vulnerable to pressure ulcers. SCI can lead to structural and functional changes below the injury level that may predispose individuals to tissue breakdown. As a result, pressure ulcers can significantly affect the quality of life, including pain, infection, altered body image, and even mortality. (2) Clinically, wheelchair power seat function, i.e., tilt and recline, is recommended for relieving sitting-induced pressures. The goal is to increase skin blood flow for the ischemic soft tissues to avoid irreversible damage. Due to variations in the level and completeness of SCI, the effectiveness of using wheelchair tilt and recline to reduce pressure ulcer risks has considerable room for improvement. Our previous study indicated that the blood flow of people with SCI may respond very differently to wheelchair tilt and recline settings. In this study, we propose to use the artificial neural network (ANN) to predict how wheelchair power seat functions affect blood flow response to seating pressure. This is regression learning because the predicted outputs are numerical values. Besides the challenging nature of regression learning, ANN may suffer from the overfitting problem which, when occurring, leads to poor predictive quality (i.e., cannot generalize). We propose using the particle swarm optimization (PSO) algorithm to train ANN to mitigate the impact of overfitting so that ANN can make correct predictions on both existing and new data. Experimental results show that the proposed approach is promising to improve ANN's predictive quality for new data.

摘要

我们提议构建一个智能系统,用于指导如何有效使用电动轮椅的倾斜和后倾功能。动机主要有以下两个方面。(1)脊髓损伤(SCI)患者易患压疮。脊髓损伤会导致损伤平面以下的结构和功能变化,使个体易发生组织破损。因此,压疮会显著影响生活质量,包括疼痛、感染、身体形象改变,甚至死亡。(2)临床上,推荐使用轮椅电动座椅功能,即倾斜和后倾,来缓解坐姿引起的压力。目的是增加缺血软组织的皮肤血流量,以避免不可逆转的损伤。由于脊髓损伤的程度和完整性存在差异,使用轮椅倾斜和后倾功能降低压疮风险的效果有很大的提升空间。我们之前的研究表明,脊髓损伤患者的血流对轮椅倾斜和后倾设置的反应可能差异很大。在本研究中,我们提议使用人工神经网络(ANN)来预测轮椅电动座椅功能如何影响对坐姿压力的血流反应。这是回归学习,因为预测输出是数值。除了回归学习具有挑战性外,人工神经网络可能会出现过拟合问题,一旦出现,会导致预测质量较差(即无法泛化)。我们提议使用粒子群优化(PSO)算法来训练人工神经网络,以减轻过拟合的影响,使人工神经网络能够对现有数据和新数据都做出正确预测。实验结果表明,所提出的方法有望提高人工神经网络对新数据的预测质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验