Suppr超能文献

癫痫发作期间及麻醉状态下的脑状态演变:基于网络的耐药性癫痫患者立体定向脑电图活动分析

Brain state evolution during seizure and under anesthesia: a network-based analysis of stereotaxic eeg activity in drug-resistant epilepsy patients.

作者信息

Yaffe Robert, Burns Sam, Gale John, Park Hyun-Joo, Bulacio Juan, Gonzalez-Martinez Jorge, Sarma Sridevi V

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5158-61. doi: 10.1109/EMBC.2012.6347155.

Abstract

Epilepsy is a neurological condition with a prevalence of 1%, and 14-34% have medically refractory epilepsy (MRE). Seizures in focal MRE are generated by a single epileptogenic zone (or focus), thus there is potentially a curative procedure - surgical resection. This procedure depends significantly on correct identification of the focus, which is often uncertain in clinical practice. In this study, we analyzed intracranial stereotaxic EEG (sEEG) data recorded in two human patients with drug-resistant epilepsy prior to undergoing resection surgery. We view the sEEG data as samples from the brain network and hypothesize that seizure foci can be identified based on their network connectivity during seizure. Specifically, we computed a time sequence of connectivity matrices from EEG recordings that represent network structure over time. For each patient, connectivity between electrodes was measured using the coherence in a given frequency band. Matrix structure was analyzed using singular value decomposition and the leading singular vector was used to estimate each electrode's time dependent centrality (importance to the network's connectivity). Our preliminary study suggests that seizure foci may be the most weakly connected regions in the brain during the beginning of a seizure and the most strongly connected regions towards the end of a seizure. Additionally, in one of the patients analyzed, the network connectivity under anesthesia highlights seizure foci. Ultimately, network centrality computed from sEEG activity may be used to develop an automated, reliable, and computationally efficient algorithm for identifying seizure foci.

摘要

癫痫是一种神经系统疾病,患病率为1%,其中14% - 34%为难治性癫痫(MRE)。局灶性MRE的癫痫发作由单个致痫区(或病灶)产生,因此可能存在一种治愈性手术——手术切除。该手术很大程度上依赖于对病灶的正确识别,而在临床实践中这往往并不确定。在本研究中,我们分析了两名耐药性癫痫患者在接受切除手术前记录的颅内立体定向脑电图(sEEG)数据。我们将sEEG数据视为来自脑网络的样本,并假设可以根据癫痫发作期间的网络连通性来识别癫痫病灶。具体而言,我们从脑电图记录中计算出一个连通性矩阵的时间序列,该序列表示随时间变化的网络结构。对于每位患者,使用给定频带内的相干性来测量电极之间的连通性。使用奇异值分解分析矩阵结构,并使用主导奇异向量来估计每个电极随时间变化的中心性(对网络连通性的重要性)。我们的初步研究表明,癫痫病灶在癫痫发作开始时可能是大脑中连接最弱的区域,而在癫痫发作接近尾声时是连接最强的区域。此外,在其中一名分析的患者中,麻醉状态下的网络连通性突出了癫痫病灶。最终,根据sEEG活动计算出的网络中心性可用于开发一种自动、可靠且计算高效的算法来识别癫痫病灶。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验