Suppr超能文献

使用基于知识的确定性分类器算法分解肌内肌电图信号。

Decomposition of intramuscular EMG signals using a knowledge -based certainty classifier algorithm.

作者信息

Parsaei H, Stashuk D W, Adel T M

机构信息

Dept. of Systems Design Eng., University of Waterloo, Waterloo, ON, N2L 3G1, Canada.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6208-11. doi: 10.1109/EMBC.2012.6347412.

Abstract

An automated system for resolving an intramuscular electromyographic (EMG) signal into its constituent motor unit potential trains (MUPTs) is presented. The system is intended mainly for clinical applications where several physiological parameters for each motor unit (MU), such as the motor unit potential (MUP) template and mean firing rate, are required. The system decomposes an EMG signal off-line by filtering the signal, detecting MUPs, and then grouping the detected MUPs using a clustering and a supervised classification algorithm. Both the clustering and supervised classification algorithms use MUP shape and MU firing pattern information to group MUPs into several MUPTs. Clustering is partially based on the K-means clustering algorithm. Supervised classification is implemented using a certainty-based classifier technique that employs a knowledge-based system to merge trains, detect and correct invalid trains, as well as adjust the assignment threshold for each train. The accuracy (93.2%±5.5%), assignment rate (93.9%±2.6%), and error in estimating the number of MUPTs (0.3±0.5) achieved for 10 simulated EMG signals comprised of 3-11 MUPTs are encouraging for using the system for decomposing various EMG signals.

摘要

本文介绍了一种将肌内肌电图(EMG)信号分解为其组成运动单位电位序列(MUPT)的自动化系统。该系统主要用于临床应用,在这些应用中,需要每个运动单位(MU)的几个生理参数,如运动单位电位(MUP)模板和平均放电率。该系统通过对信号进行滤波、检测MUP,然后使用聚类和监督分类算法对检测到的MUP进行分组,从而离线分解EMG信号。聚类和监督分类算法都使用MUP形状和MU放电模式信息将MUP分组为几个MUPT。聚类部分基于K均值聚类算法。监督分类使用基于确定性的分类器技术来实现,该技术采用基于知识的系统来合并序列、检测和纠正无效序列,以及调整每个序列的分配阈值。对于由3 - 11个MUPT组成的10个模拟EMG信号,该系统实现的准确率(93.2%±5.5%)、分配率(93.9%±2.6%)和估计MUPT数量的误差(0.3±0.5),对于使用该系统分解各种EMG信号来说是令人鼓舞的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验