Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, D-57068 Siegen, Germany.
Phys Rev Lett. 2012 Dec 21;109(25):250402. doi: 10.1103/PhysRevLett.109.250402. Epub 2012 Dec 19.
Contextuality is a natural generalization of nonlocality which does not need composite systems or spacelike separation and offers a wider spectrum of interesting phenomena. Most notably, in quantum mechanics there exist scenarios where the contextual behavior is independent of the quantum state. We show that the quest for an optimal inequality separating quantum from classical noncontextual correlations in a state-independent manner admits an exact solution, as it can be formulated as a linear program. We introduce the noncontextuality polytope as a generalization of the locality polytope and apply our method to identify two different tight optimal inequalities for the most fundamental quantum scenario with state-independent contextuality.
语境相关性是非局部性的自然推广,它不需要复合系统或类空分离,并提供了更广泛的有趣现象。最值得注意的是,在量子力学中存在着这样的情况,即语境行为与量子态无关。我们表明,以一种与量子态无关的方式寻找一种最优的不等式来分离量子和经典非语境相关性的问题,存在一个精确的解,因为它可以被表述为一个线性规划。我们引入非语境多胞形作为局域多胞形的推广,并应用我们的方法来确定最基本的与量子态无关的语境相关性的两个不同的紧最优不等式。