The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
Phys Rev Lett. 2012 Dec 21;109(25):256802. doi: 10.1103/PhysRevLett.109.256802. Epub 2012 Dec 20.
This contribution presents a study of the atomic and electronic structure of the (sqrt[5] × sqrt[5])R26.6° surface reconstruction on BaTiO(3) (001) formed by annealing in ultrahigh vacuum at 1300 K. Through density functional theory calculations in concert with thermodynamic analysis, we assess the stability of several BaTiO(3) surface reconstructions and construct a phase diagram as a function of the chemical potential of the constituent elements. Using both experimental scanning tunneling microscopy (STM) and scanning tunneling spectroscopy measurements, we were able to further narrow down the candidate structures, and conclude that the surface is either TiO(2)-Ti(3/5), TiO(2)-Ti(4/5), or some combination, where Ti adatoms occupy hollow sites of the TiO(2) surface. Density functional theory indicates that the defect states close to the valence band are from Ti adatom 3d orbitals (≈ 1.4 eV below the conduction band edge) in agreement with scanning tunneling spectroscopy measurements showing defect states 1.56 ± 0.11 eV below the conduction band minimum (1.03 ± 0.09 eV below the Fermi level). STM measurements show electronic contrast between empty and filled states' images. The calculated local density of states at the surface shows that Ti 3d states below and above the Fermi level explain the difference in electronic contrast in the experimental STM images by the presence of electronically distinctive arrangements of Ti adatoms. This work provides an interesting contrast with the related oxide SrTiO(3), for which the (001) surface (sqrt[5] × sqrt[5])R26.6° reconstruction is reported to be the TiO(2) surface with Sr adatoms.
本研究贡献聚焦于在 1300K 的超高真空退火条件下形成的 BaTiO3(001)上的(sqrt[5] × sqrt[5])R26.6°表面重构的原子和电子结构。通过密度泛函理论计算与热力学分析,我们评估了几种 BaTiO3 表面重构的稳定性,并构建了一个相图,作为组成元素化学势的函数。通过实验扫描隧道显微镜(STM)和扫描隧道谱测量,我们进一步缩小了候选结构的范围,并得出结论,表面是 TiO2-Ti(3/5)、TiO2-Ti(4/5)或其组合,其中 Ti adatoms 占据 TiO2 表面的中空位。密度泛函理论表明,价带附近的缺陷态来自 Ti adatoms 的 3d 轨道(在导带边缘以下约 1.4eV),与扫描隧道谱测量结果一致,表明缺陷态在导带最小值以下 1.56±0.11eV(费米能级以下 1.03±0.09eV)。STM 测量显示了空态和满态图像之间的电子对比度。表面的计算局域态密度表明,费米能级以下和以上的 Ti 3d 态解释了实验 STM 图像中电子对比度的差异,这是由于 Ti adatoms 的电子特征排列。这项工作与相关氧化物 SrTiO3 形成了有趣的对比,据报道,(001)表面的(sqrt[5] × sqrt[5])R26.6°重构是具有 Sr adatoms 的 TiO2 表面。