Suppr超能文献

分层建模在 10140 例病例和 11012 例对照中确定了炎症途径中肺癌易感性的新变体。

Hierarchical modeling identifies novel lung cancer susceptibility variants in inflammation pathways among 10,140 cases and 11,012 controls.

机构信息

International Agency for Research on Cancer, Lyon, France.

出版信息

Hum Genet. 2013 May;132(5):579-89. doi: 10.1007/s00439-013-1270-y. Epub 2013 Feb 1.

Abstract

Recent evidence suggests that inflammation plays a pivotal role in the development of lung cancer. In this study, we used a two-stage approach to investigate associations between genetic variants in inflammation pathways and lung cancer risk based on genome-wide association study (GWAS) data. A total of 7,650 sequence variants from 720 genes relevant to inflammation pathways were identified using keyword and pathway searches from Gene Cards and Gene Ontology databases. In Stage 1, six GWAS datasets from the International Lung Cancer Consortium were pooled (4,441 cases and 5,094 controls of European ancestry), and a hierarchical modeling (HM) approach was used to incorporate prior information for each of the variants into the analysis. The prior matrix was constructed using (1) role of genes in the inflammation and immune pathways; (2) physical properties of the variants including the location of the variants, their conservation scores and amino acid coding; (3) LD with other functional variants and (4) measures of heterogeneity across the studies. HM affected the priority ranking of variants particularly among those having low prior weights, imprecise estimates and/or heterogeneity across studies. In Stage 2, we used an independent NCI lung cancer GWAS study (5,699 cases and 5,818 controls) for in silico replication. We identified one novel variant at the level corrected for multiple comparisons (rs2741354 in EPHX2 at 8p21.1 with p value = 7.4 × 10(-6)), and confirmed the associations between TERT (rs2736100) and the HLA region and lung cancer risk. HM allows for prior knowledge such as from bioinformatic sources to be incorporated into the analysis systematically, and it represents a complementary analytical approach to the conventional GWAS analysis.

摘要

最近的证据表明,炎症在肺癌的发展中起着关键作用。在这项研究中,我们使用两阶段方法,基于全基因组关联研究(GWAS)数据,研究炎症途径中的遗传变异与肺癌风险之间的关联。使用关键词和途径搜索从 GeneCards 和 Gene Ontology 数据库中鉴定了与炎症途径相关的 720 个基因中的 7650 个序列变异。在第一阶段,将来自国际肺癌联合会的六个 GWAS 数据集进行了汇总(4441 例欧洲裔病例和 5094 例对照),并使用分层建模(HM)方法将每个变体的先验信息纳入分析中。先验矩阵是使用(1)基因在炎症和免疫途径中的作用;(2)变体的物理特性,包括变体的位置、它们的保守分数和氨基酸编码;(3)与其他功能变体的 LD;以及(4)研究之间的异质性来构建的。HM 特别影响了具有低先验权重、不精确估计和/或研究间异质性的变体的优先级排序。在第二阶段,我们使用独立的 NCI 肺癌 GWAS 研究(5699 例病例和 5818 例对照)进行了计算机模拟复制。我们在经过多次比较校正的水平上确定了一个新的变体(rs2741354 位于 8p21.1 的 EPHX2 中,p 值=7.4×10(-6)),并确认了 TERT(rs2736100)和 HLA 区域与肺癌风险之间的关联。HM 允许将来自生物信息源等先验知识系统地纳入分析中,它代表了对传统 GWAS 分析的补充分析方法。

相似文献

引用本文的文献

本文引用的文献

2
Multistage analysis of variants in the inflammation pathway and lung cancer risk in smokers.多阶段分析炎症通路中的变异与吸烟者肺癌风险的关系。
Cancer Epidemiol Biomarkers Prev. 2012 Jul;21(7):1213-21. doi: 10.1158/1055-9965.EPI-12-0352-T. Epub 2012 May 9.
3
The meta-analysis of genome-wide association studies.全基因组关联研究的荟萃分析。
Brief Bioinform. 2011 May;12(3):259-69. doi: 10.1093/bib/bbr020.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验