Institute of Environmental and Rural Science , Aberystwyth University , Edward Llwyd Building, Aberystwyth SY23 3DA , UK.
AoB Plants. 2013;5:pls052. doi: 10.1093/aobpla/pls052. Epub 2013 Jan 31.
After a series of seminal works during the last decade of the 20th century, nitric oxide (NO) is now firmly placed in the pantheon of plant signals. Nitric oxide acts in plant-microbe interactions, responses to abiotic stress, stomatal regulation and a range of developmental processes. By considering the recent advances in plant NO biology, this review will highlight certain key aspects that require further attention.
The following questions will be considered. While cytosolic nitrate reductase is an important source of NO, the contributions of other mechanisms, including a poorly defined arginine oxidizing activity, need to be characterized at the molecular level. Other oxidative pathways utilizing polyamine and hydroxylamine also need further attention. Nitric oxide action is dependent on its concentration and spatial generation patterns. However, no single technology currently available is able to provide accurate in planta measurements of spatio-temporal patterns of NO production. It is also the case that pharmaceutical NO donors are used in studies, sometimes with little consideration of the kinetics of NO production. We here include in planta assessments of NO production from diethylamine nitric oxide, S-nitrosoglutathione and sodium nitroprusside following infiltration of tobacco leaves, which could aid workers in their experiments. Further, based on current data it is difficult to define a bespoke plant NO signalling pathway, but rather NO appears to act as a modifier of other signalling pathways. Thus, early reports that NO signalling involves cGMP-as in animal systems-require revisiting. Finally, as plants are exposed to NO from a number of external sources, investigations into the control of NO scavenging by such as non-symbiotic haemoglobins and other sinks for NO should feature more highly. By crystallizing these questions the authors encourage their resolution through the concerted efforts of the plant NO community.
在 20 世纪最后十年的一系列开创性工作之后,一氧化氮(NO)现在已被牢固地置于植物信号的万神殿中。NO 作用于植物-微生物相互作用、非生物胁迫响应、气孔调节和一系列发育过程。通过考虑植物 NO 生物学的最新进展,本综述将突出需要进一步关注的某些关键方面。
将考虑以下问题。虽然细胞质硝酸还原酶是 NO 的重要来源,但需要在分子水平上表征其他机制的贡献,包括定义不明确的精氨酸氧化活性。还需要进一步关注其他利用多胺和羟胺的氧化途径。NO 作用取决于其浓度和空间生成模式。然而,目前没有一种单一的技术能够提供对 NO 产生时空模式的精确植物体内测量。此外,在研究中使用药物 NO 供体,有时很少考虑 NO 产生的动力学。我们在此包括用二乙胺一氧化氮、S-亚硝基谷胱甘肽和硝普钠对烟草叶片进行渗透后在植物体内评估 NO 产生的情况,这可能有助于研究人员进行实验。此外,根据当前数据,很难定义特定的植物 NO 信号通路,但 NO 似乎作为其他信号通路的调节剂起作用。因此,早期关于 NO 信号涉及 cGMP 的报告(如动物系统中的报告)需要重新审视。最后,由于植物会从许多外部来源接触到 NO,因此应更深入地研究非共生血红蛋白和其他 NO 汇等对 NO 清除的控制。通过结晶这些问题,作者鼓励通过植物 NO 社区的协同努力来解决这些问题。