Research Center OPTIMAS and Fachbereich Physik, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany.
Phys Rev Lett. 2013 Jan 18;110(3):035302. doi: 10.1103/PhysRevLett.110.035302. Epub 2013 Jan 15.
We experimentally investigate the action of a localized dissipative potential on a macroscopic matter wave, which we implement by shining an electron beam on an atomic Bose-Einstein condensate (BEC). We measure the losses induced by the dissipative potential as a function of the dissipation strength observing a paradoxical behavior when the strength of the dissipation exceeds a critical limit: for an increase of the dissipation rate the number of atoms lost from the BEC becomes lower. We repeat the experiment for different parameters of the electron beam and we compare our results with a simple theoretical model, finding excellent agreement. By monitoring the dynamics induced by the dissipative defect we identify the mechanisms which are responsible for the observed paradoxical behavior. We finally demonstrate the link between our dissipative dynamics and the measurement of the density distribution of the BEC allowing for a generalized definition of the Zeno effect. Because of the high degree of control on every parameter, our system is a promising candidate for the engineering of fully governable open quantum systems.
我们通过实验研究了局域耗散势对宏观物质波的作用,通过将电子束照射到原子玻色-爱因斯坦凝聚体(BEC)上来实现。我们测量了耗散势引起的损耗作为耗散强度的函数,观察到当耗散强度超过临界极限时出现了一个悖论行为:随着耗散速率的增加,从 BEC 中损失的原子数量变得更少。我们针对电子束的不同参数重复了实验,并将我们的结果与一个简单的理论模型进行了比较,发现非常吻合。通过监测由耗散缺陷引起的动力学,我们确定了导致观察到的悖论行为的机制。我们最后证明了我们的耗散动力学与 BEC 的密度分布测量之间的联系,从而允许对 Zeno 效应进行广义定义。由于对每个参数的高度控制,我们的系统是工程化完全可控制的开放量子系统的有前途的候选者。