Suppr超能文献

活动悬崖:事实还是人为产物?

Activity cliffs: facts or artifacts?

机构信息

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, Mexico.

出版信息

Chem Biol Drug Des. 2013 May;81(5):553-6. doi: 10.1111/cbdd.12115.

Abstract

The fact that similar compounds may have very different properties has a large impact in several areas of chemistry. In drug discovery, almost every medicinal chemist working on lead optimization has faced unexpected large 'jumps' in activity due to small changes in structure, that is, activity cliffs. A number of computational approaches have been developed to detect and quantify activity cliffs and help to understand, and eventually predict, structure-activity relationships (SAR) in compound data sets. Although activity cliffs do exist, the identification and quantification of cliffs have to proceed with caution because one may identify 'false positive cliffs'. In addition to apparent cliffs due to inaccurate determinations of activity, computationally identified cliffs can be artifacts attributed to the molecular representation and quantitative definition of 'high' structural similarity. This paper brings together and discusses, in a brief and integrated manner, some of the major aspects that raise the question whether all the activity cliffs detected in compound data sets are facts or artifacts.

摘要

事实上,类似的化合物可能具有非常不同的性质,这在化学的几个领域都有很大的影响。在药物发现中,几乎每一位从事先导化合物优化的药物化学家都曾因为结构的微小变化而面临活性的意外大幅“跳跃”,即活性悬崖。已经开发了许多计算方法来检测和量化活性悬崖,并帮助理解,最终预测化合物数据集的结构-活性关系(SAR)。虽然活性悬崖确实存在,但必须谨慎地进行识别和量化,因为可能会识别出“假阳性悬崖”。除了由于活性测定不准确而导致的明显悬崖之外,计算识别的悬崖可能是由于分子表示和“高”结构相似性的定量定义而产生的人为产物。本文以简洁和综合的方式汇集并讨论了一些主要方面,这些方面提出了一个问题,即在化合物数据集中检测到的所有活性悬崖是事实还是人为产物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验