Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
Am J Hum Genet. 2013 Feb 7;92(2):188-96. doi: 10.1016/j.ajhg.2012.12.017. Epub 2013 Jan 31.
Inherited vascular malformations are commonly autosomal dominantly inherited with high, but incomplete, penetrance; they often present as multiple lesions. We hypothesized that Knudson's two-hit model could explain this multifocality and partial penetrance. We performed a systematic analysis of inherited glomuvenous malformations (GVMs) by using multiple approaches, including a sensitive allele-specific pairwise SNP-chip method. Overall, we identified 16 somatic mutations, most of which were not intragenic but were cases of acquired uniparental isodisomy (aUPID) involving chromosome 1p. The breakpoint of each aUPID is located in an A- and T-rich, high-DNA-flexibility region (1p13.1-1p12). This region corresponds to a possible new fragile site. Occurrences of these mutations render the inherited glomulin variant in 1p22.1 homozygous in the affected tissues without loss of genetic material. This finding demonstrates that a double hit is needed to trigger formation of a GVM. It also suggests that somatic UPID, only detectable by sensitive pairwise analysis in heterogeneous tissues, might be a common phenomenon in human cells. Thus, aUPID might play a role in the pathogenesis of various nonmalignant disorders and might explain local impaired function and/or clinical variability. Furthermore, these data suggest that pairwise analysis of blood and tissue, even on heterogeneous tissue, can be used for localizing double-hit mutations in disease-causing genes.
遗传性血管畸形通常呈常染色体显性遗传,具有较高但不完全的外显率;它们通常表现为多发性病变。我们假设 Knudson 的两次打击模型可以解释这种多发性和部分外显率。我们通过使用多种方法,包括敏感的等位基因特异性 SNP 芯片方法,对遗传性颗粒静脉畸形 (GVM) 进行了系统分析。总的来说,我们鉴定了 16 个体细胞突变,其中大多数不是基因内突变,而是获得性单亲二倍体 (aUPID) 的情况,涉及 1p 染色体。每个 aUPID 的断点位于富含 A 和 T、高 DNA 柔韧性的区域 (1p13.1-1p12)。该区域对应于一个可能的新脆性位点。这些突变的发生使受影响组织中的遗传性glomulin 变体在 1p22.1 上呈纯合状态,而不会丢失遗传物质。这一发现表明,需要两次打击才能触发 GVM 的形成。这也表明,仅在异质组织中通过敏感的成对分析才能检测到的体细胞 UPID 可能是人类细胞中的一种常见现象。因此,aUPID 可能在各种非恶性疾病的发病机制中发挥作用,并可能解释局部功能受损和/或临床变异性。此外,这些数据表明,即使在异质组织上,血液和组织的成对分析也可用于定位致病基因中的两次打击突变。