Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
Chem Phys Lipids. 2013 Apr;169:27-38. doi: 10.1016/j.chemphyslip.2013.01.006. Epub 2013 Jan 30.
Many observations of the role of the membrane in the function and organization of transmembrane (TM) proteins have been explained in terms of hydrophobic mismatch between the membrane and the inserted protein. For a quantitative investigation of this mechanism in the lipid-protein interactions of functionally relevant conformations adopted by a multi-TM segment protein, the bacterial leucine transporter (LeuT), we employed a novel method, Continuum-Molecular Dynamics (CTMD), that quantifies the energetics of hydrophobic mismatch by combining the elastic continuum theory of membrane deformations with an atomistic level description of the radially asymmetric membrane-protein interface from MD simulations. LeuT has been serving as a model for structure-function studies of the mammalian neurotransmitter:sodium symporters (NSSs), such as the dopamine and serotonin transporters, which are the subject of intense research in the field of neurotransmission. The membrane models in which LeuT was embedded for these studies were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid, or 3:1 mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) lipids. The results show that deformation of the host membrane alone is not sufficient to alleviate the hydrophobic mismatch at specific residues of LeuT. The calculations reveal significant membrane thinning and water penetration due to the specific local polar environment produced by the charged K288 of TM7 in LeuT, that is membrane-facing deep inside the hydrophobic milieu of the membrane. This significant perturbation is shown to result in unfavorable polar-hydrophobic interactions at neighboring hydrophobic residues in TM1a and TM7. We show that all the effects attributed to the K288 residue (membrane thinning, water penetration, and the unfavorable polar-hydrophobic interactions at TM1a and TM7), are abolished in calculations with the K288A mutant. The involvement of hydrophobic mismatch is somewhat different in the functionally distinct conformations (outward-open, occluded, inward-open) of LeuT, and the differences are shown to connect to structural elements (e.g., TM1a) known to play key roles in transport. This finding suggests a mechanistic hypothesis for the enhanced transport activity observed for the K288A mutant, suggesting that the unfavorable hydrophobic-hydrophilic interactions hinder the motion of TM1a in the functionally relevant conformational transition to the inward-open state. Various extents of such unfavorable interactions, involving exposure to the lipid environment of adjacent hydrophobic and polar residues, are common in multi-segment transmembrane proteins, and must be considered to affect functionally relevant conformational transitions.
许多关于膜在跨膜(TM)蛋白功能和组织中的作用的观察结果,都可以用膜与插入蛋白之间的疏水性不匹配来解释。为了定量研究这种机制在功能相关构象的脂质-蛋白相互作用中的作用,这种构象由多 TM 段蛋白细菌亮氨酸转运蛋白(LeuT)采用,我们采用了一种新方法,连续体-分子动力学(CTMD),通过结合膜变形的弹性连续体理论和 MD 模拟中径向不对称膜-蛋白界面的原子水平描述,来量化疏水性不匹配的能量。LeuT 一直是哺乳动物神经递质:钠离子转运体(NSSs)结构-功能研究的模型,如多巴胺和血清素转运体,它们是神经传递领域研究的热点。为了进行这些研究,将 LeuT 嵌入的膜模型由 1-棕榈酰-2-油酰-sn-甘油-3-磷酸胆碱(POPC)脂质或 1-棕榈酰-2-油酰-sn-甘油-3-磷酸乙醇胺(POPE)和 1-棕榈酰-2-油酰-sn-甘油-3-磷酸甘油(POPG)脂质的 3:1 混合物组成。结果表明,仅宿主膜的变形不足以缓解 LeuT 特定残基的疏水性不匹配。计算结果显示,由于 LeuT 中 TM7 的带电 K288 产生的特定局部极性环境,膜会明显变薄并渗透水,即膜面向膜疏水环境的深处。结果表明,这种显著的干扰会导致 TM1a 和 TM7 中相邻疏水性残基处产生不利的极性-疏水性相互作用。我们表明,归因于 K288 残基的所有效应(膜变薄、水渗透以及 TM1a 和 TM7 处不利的极性-疏水性相互作用),在 K288A 突变体的计算中都被消除了。疏水性不匹配在 LeuT 的功能不同构象(外向开放、闭塞、内向开放)中的作用有些不同,并且差异与已知在转运中起关键作用的结构元素(例如 TM1a)相关联。这一发现为观察到 K288A 突变体增强的转运活性提出了一种机制假设,表明不利的疏水性-亲水性相互作用阻碍了 TM1a 在功能相关构象向内向开放状态的转变。在多段跨膜蛋白中,涉及相邻疏水性和极性残基暴露于脂质环境的各种程度的这种不利相互作用很常见,必须考虑这些相互作用以影响功能相关的构象转变。