Suppr超能文献

聚乙二醇聚酯纳米粒在 Caco-2 细胞中的细胞内化途径和细胞间转运。

Cellular internalization pathway and transcellular transport of pegylated polyester nanoparticles in Caco-2 cells.

机构信息

Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China.

出版信息

Int J Pharm. 2013 Mar 10;445(1-2):58-68. doi: 10.1016/j.ijpharm.2013.01.060. Epub 2013 Feb 1.

Abstract

Biodegradable polyester nanoparticles have now attracted growing interest as promising drug delivery system. However, a fundamental understanding about its cellular transport as well as the influence by the polymeric architecture is still lack, which remains a significant obstacle to optimal nanocarrier design. In this work, using Caco-2 cell model, we characterized the cellular transport pathway of pegylated polyester nanoparticles and determined the effect of polymer architecture including PEG chain length and core material on its cellular interaction and transcellular transport. The nanoparticles were found to undergo an energy-dependent, lipid raft-mediated, but caveolae-independent endocytosis. PEG chain length (from 2000 to 5000 Da) and core material (PLA/PLGA) hardly affected the cellular interaction and the intracellular itinerary of the nanoparticles. However, in the case of transcellular transport, the maximal transcellular transport efficiency for its payload was achieved by the PEG5000-PLA40000 nanoparticles which present higher drug loading capacity and slower drug release. The findings here revealed the cellular interaction mechanism of pegylated polyester nanoparticles and provided evidence for the role of polymer architectures in modulating the transcellular permeability of the agents loaded by the nanoparticles, and would be helpful in improving carrier design to enhance drug delivery.

摘要

可生物降解的聚酯纳米颗粒作为有前途的药物传递系统,现在引起了越来越多的关注。然而,对于其细胞内转运以及聚合物结构的影响,我们还缺乏基本的了解,这仍然是优化纳米载体设计的一个重大障碍。在这项工作中,我们使用 Caco-2 细胞模型,研究了聚乙二醇化聚酯纳米颗粒的细胞内转运途径,并确定了聚合物结构(包括 PEG 链长和核材料)对其细胞相互作用和跨细胞转运的影响。研究发现,纳米颗粒通过能量依赖性、脂筏介导但小窝蛋白独立的内吞作用进行转运。PEG 链长(2000 至 5000 Da)和核材料(PLA/PLGA)几乎不影响纳米颗粒的细胞相互作用和细胞内途径。然而,在跨细胞转运的情况下,PEG5000-PLA40000 纳米颗粒的最大跨细胞转运效率最高,其载药能力更高,药物释放更慢。这些发现揭示了聚乙二醇化聚酯纳米颗粒的细胞相互作用机制,并为聚合物结构在调节纳米颗粒载药的跨细胞通透性方面的作用提供了证据,有助于改进载体设计,以增强药物传递。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验