Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China.
Biomaterials. 2012 Oct;33(28):6769-82. doi: 10.1016/j.biomaterials.2012.05.066. Epub 2012 Jun 15.
Transcellular transport is essential for transmucosal and plasma-to-tissue drug delivery by nanoparticles, whereas its fundamental pathways have not been fully clarified. In this study, an in-depth investigation was conducted into the intracellular itinerary and the transcytosis pathway of wheat germ agglutinin-functionalized nanoparticles (WGA-NP) with various polymer architectures in the Caco-2 cell model. GFP-Rabs, Rab4, Rab5, Rab7, Rab11, GTPases served as key regulators of vesicular transport, and their mutants were transfected to Caco-2 cells respectively to determine the cellular itinerary of WGA-NP and the role of Rabs therein. Transcytosis inhibition experiments indicated that transcellular transport of WGA-NP (PEG(3000)-PLA(40000) formulation) happened in a cytoskeleton-dependent manner and majorly by means of clathrin-mediated mechanism. Intracellular transport, especially the endolysosome pathway was found largely contribute to the transcytosis of WGA-NP. WGA-NP with shorter surface PEG length (2000) resulted in higher cellular association and more colocalization with the clathrin-mediated transport pathway, while that with longer surface PEG length (5000) avoided the clathrin-mediated transport pathway but achieved higher transcytosis after 4 h incubation. WGA-NP with PLGA as the core materials obtained elevated lysosome escape and enhanced transcytosis after 2 h incubation. These findings provided important evidence for the role of polymer architectures in modulating cellular transport of functionalized nanocarriers, and would be helpful in improving carrier design to enhance drug delivery.
细胞转导对于纳米颗粒跨黏膜和血浆向组织的药物递送至关重要,但其基本途径尚未完全阐明。在这项研究中,我们深入研究了不同聚合物结构的麦胚凝集素功能化纳米颗粒(WGA-NP)在 Caco-2 细胞模型中的细胞内途径和转胞吞作用途径。GFP-Rabs、Rab4、Rab5、Rab7、Rab11 和 GTPases 作为囊泡运输的关键调节剂,它们的突变体分别转染到 Caco-2 细胞中,以确定 WGA-NP 的细胞内途径及其在其中的 Rabs 作用。转胞吞作用抑制实验表明,WGA-NP(PEG(3000)-PLA(40000)制剂)的跨细胞转运以细胞骨架依赖的方式发生,主要通过网格蛋白介导的机制。细胞内转运,特别是内溶酶体途径,对 WGA-NP 的转胞吞作用有很大贡献。具有较短表面 PEG 长度(2000)的 WGA-NP 导致更高的细胞结合和与网格蛋白介导的转运途径更多的共定位,而具有较长表面 PEG 长度(5000)的 WGA-NP 避免了网格蛋白介导的转运途径,但在孵育 4 小时后实现了更高的转胞吞作用。以 PLGA 为核心材料的 WGA-NP 在孵育 2 小时后获得了更高的溶酶体逃逸和增强的转胞吞作用。这些发现为聚合物结构在调节功能化纳米载体的细胞转运中的作用提供了重要证据,并有助于改进载体设计以增强药物递送。