Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America.
PLoS One. 2013;8(1):e54136. doi: 10.1371/journal.pone.0054136. Epub 2013 Jan 24.
The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of therapeutics targeting EGF ligands or the receptor itself.
表皮生长因子受体(EGFR)是受体酪氨酸激酶家族的一员,在多种细胞过程中发挥作用。EGFR 的激活需要配体结合细胞外结构域,以促进构象变化,导致二聚体化和细胞内激酶结构域的转磷酸化。目前已知有七种配体与 EGFR 结合,亲和力范围从亚纳摩尔到近微摩尔的解离常数。在 EGFR 的情况下,结合配体后假设的不同构象状态被认为是激活下游信号网络的决定因素。以前的生化研究表明存在低亲和力和高亲和力的 EGFR 配体。虽然这些研究已经确定了配体结合的功能影响,但缺乏高分辨率的结构数据。为了更好地了解 EGFR 结合亲和力的分子基础,我们将每个 EGFR 配体对接至假定的活性状态细胞外结构域二聚体,并进行了 25.0 ns 的分子动力学模拟。MM-PBSA/GBSA 是一种有效的计算方法,可以近似蛋白质-蛋白质相互作用的自由能,并在氨基酸水平上分解自由能。我们将这些方法应用于每个配体-受体模拟的最后 6.0 ns。MM-PBSA 计算能够成功地根据两种亲和力类别对所有七种 EGFR 配体进行排序:EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR。能量分解的结果确定了几种在结合配体中常见的相互作用。这些发现表明,虽然 EGFR 配体家族中的几个残基是保守的,但没有一组特定的残基决定亲和力类别。相反,我们发现了主要由静电和范德华力驱动的异构相互作用集。这些结果不仅说明了 EGFR 动力学的复杂性,而且为针对 EGF 配体或受体本身的基于结构的治疗药物设计铺平了道路。