Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States.
J Phys Chem B. 2011 Jun 2;115(21):6971-5. doi: 10.1021/jp201949k. Epub 2011 May 10.
We present a new theoretical method for rapid calculation of the solvation free energy in water by combining molecular simulation and the classical density functional theory (DFT). The DFT calculation is based on an accurate free-energy functional for water that incorporates the simulation results for long-range correlations and the fundamental measure theory for the molecular excluded-volume effects. The numerical performance of the theoretical method has been validated with simulation results and experimental data for the solvation free energies of halide (F(-), Cl(-), Br(-), and I(-)) and alkali (Li(+), Na(+), K(+), Rb(+), and Cs(+)) ions in water at ambient conditions. Because simulation is applied only to the particular thermodynamic condition of interest, the hybrid method is computationally much more efficient than conventional ways of solvation free energy calculations.
我们提出了一种新的理论方法,通过将分子模拟和经典密度泛函理论(DFT)相结合,快速计算水中的溶剂化自由能。DFT 计算基于一个精确的水自由能泛函,其中包含了对长程相关的模拟结果以及分子排斥体积效应的基本测量理论。该理论方法的数值性能已经通过卤化物(F(-)、Cl(-)、Br(-)和 I(-))和碱金属(Li(+)、Na(+)、K(+)、Rb(+)和 Cs(+))离子在水中的溶剂化自由能的模拟结果和实验数据进行了验证,这些结果在环境条件下。由于模拟仅应用于感兴趣的特定热力学条件,因此混合方法在计算上比传统的溶剂化自由能计算方法效率高得多。