Suppr超能文献

使用通道化 Hotelling 观测器的光声图像重建算法比较。

Comparison of photoacoustic image reconstruction algorithms using the channelized Hotelling observer.

机构信息

The University of Chicago, Department of Radiology, 5841 South Maryland Avenue, Chicago, IL 60637, USA.

出版信息

J Biomed Opt. 2013 Feb;18(2):26009. doi: 10.1117/1.JBO.18.2.026009.

Abstract

We demonstrate the use of task-based image-quality metrics to compare various photoacoustic image-reconstruction algorithms, including a method based on the pseudoinverse of the system matrix, simple backprojection, filtered backprojection, and a method based on the Fourier transform. We use a three-dimensional forward model with a linear transducer array to simulate a photoacoustic imaging system. The reconstructed images correspond with two-dimensional slices of the object and are 128×128 pixels. In order to compare the algorithms, we use channelized Hotelling observers that predict the detection ability of human observers. We use two sets of channels: constant Q and difference of Gaussian spatial frequency channels. We look at three tasks, identification of a point source in a uniform background, identification of a 0.5-mm cube in a uniform background, and identification of a point source in a lumpy background. For the lumpy background task, which is the most realistic of the tasks, the method based on the pseudoinverse performs best according to both sets of channels.

摘要

我们展示了基于任务的图像质量度量在比较各种光声图像重建算法中的应用,包括基于系统矩阵伪逆的方法、简单的反向投影、滤波反向投影和基于傅里叶变换的方法。我们使用具有线性换能器阵列的三维正向模型来模拟光声成像系统。重建的图像与物体的二维切片相对应,大小为 128×128 像素。为了比较算法,我们使用通道化的霍特林观测器来预测人类观察者的检测能力。我们使用两组通道:恒 Q 和高斯差分空间频率通道。我们研究了三个任务,即均匀背景下点源的识别、均匀背景下 0.5 毫米立方的识别和块状背景下点源的识别。对于块状背景任务,这是最现实的任务,根据两组通道,基于伪逆的方法表现最佳。

相似文献

1
3
Frequency-domain photoacoustic phased array probe for biomedical imaging applications.
Opt Lett. 2011 Dec 1;36(23):4560-2. doi: 10.1364/OL.36.004560.
5
Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT.
Phys Med Biol. 2015 Apr 7;60(7):2751-63. doi: 10.1088/0031-9155/60/7/2751. Epub 2015 Mar 13.

引用本文的文献

1
Protocol for covalent-targeted and activatable photoacoustic imaging agent for tumor imaging in mice.
STAR Protoc. 2025 Aug 23;6(3):104046. doi: 10.1016/j.xpro.2025.104046.
3
Evaluation of lesion detectability in positron emission tomography when using a convergent penalized likelihood image reconstruction method.
J Med Imaging (Bellingham). 2017 Jan;4(1):011002. doi: 10.1117/1.JMI.4.1.011002. Epub 2016 Nov 22.
4
Correlation between human and model observer performance for discrimination task in CT.
Phys Med Biol. 2014 Jul 7;59(13):3389-404. doi: 10.1088/0031-9155/59/13/3389. Epub 2014 May 30.
5
Discrete imaging models for three-dimensional optoacoustic tomography using radially symmetric expansion functions.
IEEE Trans Med Imaging. 2014 May;33(5):1180-93. doi: 10.1109/TMI.2014.2308478.

本文引用的文献

1
Singular value decomposition analysis of a photoacoustic imaging system and 3D imaging at 0.7 FPS.
Opt Express. 2011 Jul 4;19(14):13405-17. doi: 10.1364/OE.19.013405.
3
Real-time, contrast enhanced photoacoustic imaging of cancer in a mouse window chamber.
Opt Express. 2010 Aug 30;18(18):18625-32. doi: 10.1364/OE.18.018625.
4
Observer signal-to-noise ratios for the ML-EM algorithm.
Proc SPIE Int Soc Opt Eng. 1996 Jan 1;2712:47-58. doi: 10.1117/12.236860.
6
Photoacoustic tomography and sensing in biomedicine.
Phys Med Biol. 2009 Oct 7;54(19):R59-97. doi: 10.1088/0031-9155/54/19/R01. Epub 2009 Sep 1.
7
Fast full-view photoacoustic imaging by combined scanning with a linear transducer array.
Opt Express. 2007 Nov 12;15(23):15566-75. doi: 10.1364/oe.15.015566.
8
Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo.
IEEE Trans Med Imaging. 2005 Apr;24(4):436-40. doi: 10.1109/tmi.2004.843199.
10
Addition of a channel mechanism to the ideal-observer model.
J Opt Soc Am A. 1987 Dec;4(12):2447-57. doi: 10.1364/josaa.4.002447.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验