The University of Chicago, Department of Radiology, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
J Biomed Opt. 2013 Feb;18(2):26009. doi: 10.1117/1.JBO.18.2.026009.
We demonstrate the use of task-based image-quality metrics to compare various photoacoustic image-reconstruction algorithms, including a method based on the pseudoinverse of the system matrix, simple backprojection, filtered backprojection, and a method based on the Fourier transform. We use a three-dimensional forward model with a linear transducer array to simulate a photoacoustic imaging system. The reconstructed images correspond with two-dimensional slices of the object and are 128×128 pixels. In order to compare the algorithms, we use channelized Hotelling observers that predict the detection ability of human observers. We use two sets of channels: constant Q and difference of Gaussian spatial frequency channels. We look at three tasks, identification of a point source in a uniform background, identification of a 0.5-mm cube in a uniform background, and identification of a point source in a lumpy background. For the lumpy background task, which is the most realistic of the tasks, the method based on the pseudoinverse performs best according to both sets of channels.
我们展示了基于任务的图像质量度量在比较各种光声图像重建算法中的应用,包括基于系统矩阵伪逆的方法、简单的反向投影、滤波反向投影和基于傅里叶变换的方法。我们使用具有线性换能器阵列的三维正向模型来模拟光声成像系统。重建的图像与物体的二维切片相对应,大小为 128×128 像素。为了比较算法,我们使用通道化的霍特林观测器来预测人类观察者的检测能力。我们使用两组通道:恒 Q 和高斯差分空间频率通道。我们研究了三个任务,即均匀背景下点源的识别、均匀背景下 0.5 毫米立方的识别和块状背景下点源的识别。对于块状背景任务,这是最现实的任务,根据两组通道,基于伪逆的方法表现最佳。