Suppr超能文献

利用杂种群组合或分离的训练集进行基因组预测,以提高玉米对北方玉米叶斑病的抗性。

Genomic prediction of northern corn leaf blight resistance in maize with combined or separated training sets for heterotic groups.

机构信息

Institute of Plant Breeding, Seed Sciences and Population Genetics, University of Hohenheim, Stuttgart 70599, Germany.

出版信息

G3 (Bethesda). 2013 Feb;3(2):197-203. doi: 10.1534/g3.112.004630. Epub 2013 Feb 1.

Abstract

Northern corn leaf blight (NCLB), a severe fungal disease causing yield losses worldwide, is most effectively controlled by resistant varieties. Genomic prediction could greatly aid resistance breeding efforts. However, the development of accurate prediction models requires large training sets of genotyped and phenotyped individuals. Maize hybrid breeding is based on distinct heterotic groups that maximize heterosis (the dent and flint groups in Central Europe). The resulting allocation of resources to parallel breeding programs challenges the establishment of sufficiently sized training sets within groups. Therefore, using training sets combining both heterotic groups might be a possibility of increasing training set sizes and thereby prediction accuracies. The objectives of our study were to assess the prospect of genomic prediction of NCLB resistance in maize and the benefit of a training set that combines two heterotic groups. Our data comprised 100 dent and 97 flint lines, phenotyped for NCLB resistance per se and genotyped with high-density single-nucleotide polymorphism marker data. A genomic BLUP model was used to predict genotypic values. Prediction accuracies reached a maximum of 0.706 (dent) and 0.690 (flint), and there was a strong positive response to increases in training set size. The use of combined training sets led to significantly greater prediction accuracies for both heterotic groups. Our results encourage the application of genomic prediction in NCLB-resistance breeding programs and the use of combined training sets.

摘要

北方玉米叶斑病(NCLB)是一种严重的真菌病,可导致全球产量损失,通过抗性品种是最有效的控制方法。基因组预测可以极大地帮助抗性育种工作。然而,开发准确的预测模型需要大量经过基因分型和表型个体的训练集。玉米杂交种的培育是基于最大限度提高杂种优势的不同杂种群(中欧的马齿型和硬粒型)。由此产生的资源分配给平行的育种计划,对在群体内建立足够大小的训练集提出了挑战。因此,使用结合两个杂种群的训练集可能是增加训练集大小并提高预测准确性的一种可能性。本研究的目的是评估玉米对 NCLB 抗性进行基因组预测的前景,以及结合两个杂种群的训练集的优势。我们的数据包括 100 个马齿型和 97 个硬粒型系,对 NCLB 抗性本身进行了表型分析,并使用高密度单核苷酸多态性标记数据进行了基因分型。使用基因组 BLUP 模型预测基因型值。预测准确性最高可达 0.706(马齿型)和 0.690(硬粒型),且随着训练集大小的增加呈现出强烈的正响应。使用组合训练集可显著提高两个杂种群的预测准确性。我们的研究结果鼓励在 NCLB 抗性育种计划中应用基因组预测,并使用组合训练集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验