Department of Agricultural Sciences, University of Helsinki, Helsinki FIN-00014, Finland.
Genetics. 2012 Jul;191(3):969-87. doi: 10.1534/genetics.112.139014. Epub 2012 May 2.
Numerous Bayesian methods of phenotype prediction and genomic breeding value estimation based on multilocus association models have been proposed. Computationally the methods have been based either on Markov chain Monte Carlo or on faster maximum a posteriori estimation. The demand for more accurate and more efficient estimation has led to the rapid emergence of workable methods, unfortunately at the expense of well-defined principles for Bayesian model building. In this article we go back to the basics and build a Bayesian multilocus association model for quantitative and binary traits with carefully defined hierarchical parameterization of Student's t and Laplace priors. In this treatment we consider alternative model structures, using indicator variables and polygenic terms. We make the most of the conjugate analysis, enabled by the hierarchical formulation of the prior densities, by deriving the fully conditional posterior densities of the parameters and using the acquired known distributions in building fast generalized expectation-maximization estimation algorithms.
已经提出了许多基于多基因座关联模型的表型预测和基因组育种值估计的贝叶斯方法。从计算上来说,这些方法要么基于马尔可夫链蒙特卡罗方法,要么基于更快的最大后验估计方法。对更准确和更高效估计的需求导致了可行方法的快速出现,但不幸的是,这是以牺牲贝叶斯模型构建的明确原则为代价的。在本文中,我们回到基础,为定量和二项性状构建了一个贝叶斯多基因座关联模型,该模型对学生 t 分布和拉普拉斯先验分布进行了精心定义的层次参数化。在这种处理方式中,我们使用了指示变量和多基因术语来考虑替代模型结构。我们充分利用了由先验密度的层次结构所带来的共轭分析,通过推导出参数的完全条件后验密度,并在构建快速广义期望最大化估计算法时使用所获得的已知分布。