Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States.
ACS Nano. 2013 Mar 26;7(3):2388-95. doi: 10.1021/nn3055835. Epub 2013 Feb 26.
Graphene has emerged as an outstanding material for optoelectronic applications due to its high electronic mobility and unique doping capabilities. Here we demonstrate electrical tunability and hybridization of plasmons in graphene nanodisks and nanorings down to 3.7 μm light wavelength. By electrically doping patterned graphene arrays with an applied gate voltage, we observe radical changes in the plasmon energy and strength, in excellent quantitative agreement with rigorous analytical theory. We further show evidence of an unexpected increase in plasmon lifetime with growing energy. Plasmon hybridization and electrical doping in nanorings of suitably chosen nanoscale dimensions are key elements for bringing the optical response of graphene closer to the near-infrared, where it can provide a robust, integrable platform for light modulation, switching, and sensing.
石墨烯因其高电子迁移率和独特的掺杂能力而成为一种出色的光电应用材料。在这里,我们展示了在 3.7μm 光波长下,石墨烯纳米盘和纳米环中的等离子体的电可调谐性和杂化。通过用施加的栅极电压对图案化的石墨烯阵列进行电掺杂,我们观察到等离子体能量和强度发生了根本变化,与严格的分析理论非常吻合。我们进一步证明了随着能量的增加,等离子体寿命的意外增加。在适当选择的纳米级尺寸的纳米环中,等离子体杂化和电掺杂是使石墨烯的光学响应更接近近红外的关键因素,在近红外区域,它可以为光调制、开关和传感提供一个稳健、可集成的平台。