1] IQFR-CSIC, Serrano 119, 28006 Madrid, Spain [2].
1] ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain [2] ICREA-Institucio Catalana de Recerca i Estudis Avancats, Passeig de Lluis Companys 23, 08010 Barcelona, Spain.
Nat Commun. 2014 Mar 27;5:3548. doi: 10.1038/ncomms4548.
The ability to modulate light at high speeds is of paramount importance for telecommunications, information processing and medical imaging technologies. This has stimulated intense efforts to master optoelectronic switching at visible and near-infrared frequencies, although coping with current computer speeds in integrated architectures still remains a major challenge. As a partial success, mid-infrared light modulation has been recently achieved through gating patterned graphene. Here we show that atomically thin noble metal nanoislands can extend optical modulation to the visible and near-infrared spectral range. We find plasmons in thin metal nanodisks to produce similar absorption cross-sections as spherical particles of the same diameter. Using realistic levels of electrical doping, plasmons are shifted by about half their width, thus leading to a factor-of-two change in light absorption. These results, which we substantiate on microscopic quantum theory of the optical response, hold great potential for the development of electrical visible and near-infrared light modulation in integrable, nanoscale devices.
高速调制光对于电信、信息处理和医学成像技术至关重要。这激发了人们努力掌握可见光和近红外频率的光电开关,尽管在集成架构中应对当前的计算机速度仍然是一个主要挑战。作为部分成功,最近通过门控图案化石墨烯实现了中红外光调制。在这里,我们表明原子薄的贵金属纳米岛可以将光调制扩展到可见光和近红外光谱范围。我们发现,薄金属纳米盘中的等离子体产生与相同直径的球形颗粒相似的吸收截面。使用现实水平的电掺杂,等离子体的宽度移动约一半,从而导致光吸收的两倍变化。这些结果,我们在光响应的微观量子理论中得到证实,为在可集成的纳米尺度器件中实现电可见光和近红外光调制提供了巨大的潜力。