Laboratoire des Polymères, Institut des Matériaux, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Langmuir. 2013 Jun 18;29(24):7325-33. doi: 10.1021/la304949h. Epub 2013 Feb 20.
In this Article, we studied the surface immobilization of five organic-acid-modified atom-transfer radical polymerization (ATRP) initiators based on salicylic acid, catechol, phthalic acid, and m- and p-benzoic acid on alumina, and we also investigated the growth of hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(poly(ethylene glycol)methycrylate) (PPEGMA6) brushes from the resulting initiator-modified substrates. Whereas the surface immobilization of phthalic acid- and benzoic acid-based initiators results in only very thin brushes or no brush growth at all, SI-ATRP of HEMA and PEGMA6 from alumina surfaces modified with salicylate or catechol generates brushes with thicknesses comparable to those obtained using organosilane-based initiators. Most interestingly, the surface immobilization of the catechol- and salicylate based-initiators was found to be pH-dependent, which allowed facile variation of the ATRP initiator surface concentration and, concomitantly, the polymer brush grafting density by adjusting the pH of the aqueous solution that was used to immobilize the initiator. This is in contrast to organosilane-based initiators, where the variation of the grafting density is usually accomplished using mixtures of the ATRP initiator and an ATRP inactive "dummy". Another difference between the organosilane-based initiators and the organic acid analogues is the stability of hydrophilic brushes grown from alumina. After a certain threshold thickness was exceeded, organosilane-tethered PPEGMA6 brushes were observed to detach from the substrate, in contrast to brushes grown from catechol or salicylate initiators, which did not show signs of degradation. Finally, as a first proof-of-concept, the salicylate-based initiator was used to develop an all-aqueous protocol for the modification of alumina membranes with hydrophilic PHEMA and succinic anhydride post-modified polymer brushes. The water permeation properties of these hybrid membranes can be controlled by adjusting the brush thickness in the case of the neutral PHEMA brush coating or can be pH-gated after post-polymerization modification to introduce carboxylic acid groups.
在本文中,我们研究了基于水杨酸、儿茶酚、邻苯二甲酸、间苯和对苯二甲酸的五种有机酸改性原子转移自由基聚合(ATRP)引发剂在氧化铝上的表面固定化,并研究了由此引发剂改性基底引发的亲水性聚(2-羟乙基甲基丙烯酸酯)(PHEMA)和聚(聚(乙二醇)甲基丙烯酸酯)(PPEGMA6)刷的生长。虽然邻苯二甲酸和苯甲酸基引发剂的表面固定化仅导致非常薄的刷或根本没有刷的生长,但水杨酸盐或儿茶酚改性氧化铝表面的 HEMA 和 PEGMA6 的 SI-ATRP 生成的刷的厚度与使用有机硅烷基引发剂获得的厚度相当。最有趣的是,发现基于邻苯二甲酸和水杨酸的引发剂的表面固定化是 pH 依赖性的,这允许通过调节用于固定引发剂的水溶液的 pH 来轻松改变 ATRP 引发剂表面浓度,并且同时改变聚合物刷接枝密度。这与基于有机硅烷的引发剂形成对比,在基于有机硅烷的引发剂中,接枝密度的变化通常通过 ATRP 引发剂和 ATRP 非活性“虚拟”物的混合物来实现。有机硅烷基引发剂和有机酸类似物之间的另一个区别是从氧化铝生长的亲水性刷的稳定性。超过一定的阈值厚度后,观察到有机硅烷键合的 PPEGMA6 刷从基底上脱落,而与从邻苯二甲酸或水杨酸引发剂生长的刷不同,它们没有降解的迹象。最后,作为第一个概念验证,使用基于水杨酸的引发剂开发了一种全水协议,用于用亲水性 PHEMA 和琥珀酸酐后修饰聚合物刷修饰氧化铝膜。这些混合膜的水渗透性能可以通过调节中性 PHEMA 刷涂层的刷厚度来控制,或者可以在聚合后修饰后通过 pH 门控来引入羧酸基团。