Suppr超能文献

基于上下文的生物医学图表相似度估计的新算法。

A new algorithm for context-based biomedical diagram similarity estimation.

机构信息

Information Systems Department, College of Computing Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA.

出版信息

Bioinformatics. 2013 Mar 15;29(6):780-9. doi: 10.1093/bioinformatics/btt030. Epub 2013 Feb 7.

Abstract

MOTIVATION

Diagrams embedded in the biomedical literature convey rich contents, which often concisely and intuitively highlight key thesis of a research article. Despite their vital importance and informative clues for biomedical literature navigation and retrieval; currently, we miss an effective computational method for automatically understanding and accessing these valuable resources.

PROPOSED METHOD

To address the aforementioned gap, we propose a novel context-based algorithm for estimating the similarity between a pair of biomedical diagrams. The main difference of the proposed algorithm with respect to the existing methods lies in the new algorithm's incorporation of the semantic context associated with diagrams in their source documents into the diagram similarity estimation process. In addition, the new approach also performs a series of advanced image processing and text mining operations to comprehensively extract the semantic content graphically encoded inside diagram images.

RESULTS

The new algorithm can be deployed as a reusable component providing a fundamental function for building many advanced, semantic-aware applications on biomedical diagram processing. As a case study, in our experiments, we demonstrate the advantage of the new algorithm for diagram retrieval. A set of biomedical diagram search and ranking experiments were conducted, where the performance of the new method was compared with that of five peer methods. The comparison results demonstrate the performance superiority of the new algorithm with all peer methods with statistical significance.

摘要

动机

嵌入在生物医学文献中的图表传达了丰富的内容,这些内容通常简洁直观地突出了研究文章的关键论点。尽管它们对于生物医学文献的导航和检索至关重要,并提供了有价值的信息线索,但我们目前缺乏一种有效的计算方法来自动理解和利用这些宝贵的资源。

方法

为了解决上述差距,我们提出了一种新的基于上下文的算法,用于估计一对生物医学图表之间的相似性。与现有方法相比,该算法的主要区别在于新算法将图表在其源文档中的语义上下文纳入到图表相似性估计过程中。此外,新方法还执行了一系列先进的图像处理和文本挖掘操作,以全面提取图表图像中图形编码的语义内容。

结果

新算法可以作为一个可重复使用的组件进行部署,为构建许多基于生物医学图表处理的高级语义感知应用程序提供了基本功能。作为一个案例研究,在我们的实验中,我们展示了新算法在图表检索方面的优势。进行了一组生物医学图表搜索和排名实验,将新方法的性能与五种同行方法进行了比较。比较结果表明,新算法在所有同行方法中的性能都具有统计学意义上的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验