Suppr超能文献

一种保持视觉保真度的距离度量学习的提升框架及其在医学图像检索中的应用。

A boosting framework for visuality-preserving distance metric learning and its application to medical image retrieval.

机构信息

Machine Learning Department, School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15231, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2010 Jan;32(1):30-44. doi: 10.1109/TPAMI.2008.273.

Abstract

Similarity measurement is a critical component in content-based image retrieval systems, and learning a good distance metric can significantly improve retrieval performance. However, despite extensive study, there are several major shortcomings with the existing approaches for distance metric learning that can significantly affect their application to medical image retrieval. In particular, "similarity" can mean very different things in image retrieval: resemblance in visual appearance (e.g., two images that look like one another) or similarity in semantic annotation (e.g., two images of tumors that look quite different yet are both malignant). Current approaches for distance metric learning typically address only one goal without consideration of the other. This is problematic for medical image retrieval where the goal is to assist doctors in decision making. In these applications, given a query image, the goal is to retrieve similar images from a reference library whose semantic annotations could provide the medical professional with greater insight into the possible interpretations of the query image. If the system were to retrieve images that did not look like the query, then users would be less likely to trust the system; on the other hand, retrieving images that appear superficially similar to the query but are semantically unrelated is undesirable because that could lead users toward an incorrect diagnosis. Hence, learning a distance metric that preserves both visual resemblance and semantic similarity is important. We emphasize that, although our study is focused on medical image retrieval, the problem addressed in this work is critical to many image retrieval systems. We present a boosting framework for distance metric learning that aims to preserve both visual and semantic similarities. The boosting framework first learns a binary representation using side information, in the form of labeled pairs, and then computes the distance as a weighted Hamming distance using the learned binary representation. A boosting algorithm is presented to efficiently learn the distance function. We evaluate the proposed algorithm on a mammographic image reference library with an Interactive Search-Assisted Decision Support (ISADS) system and on the medical image data set from ImageCLEF. Our results show that the boosting framework compares favorably to state-of-the-art approaches for distance metric learning in retrieval accuracy, with much lower computational cost. Additional evaluation with the COREL collection shows that our algorithm works well for regular image data sets.

摘要

相似性度量是基于内容的图像检索系统的关键组成部分,学习良好的距离度量可以显著提高检索性能。然而,尽管已经进行了广泛的研究,现有的距离度量学习方法仍存在几个主要的缺点,这可能会显著影响它们在医学图像检索中的应用。特别是,“相似性”在图像检索中可能有不同的含义:视觉外观上的相似(例如,两个看起来相似的图像)或语义注释上的相似(例如,两个看起来非常不同但都是恶性的肿瘤图像)。当前的距离度量学习方法通常只关注一个目标,而不考虑另一个目标。这对于医学图像检索来说是有问题的,因为其目标是帮助医生做出决策。在这些应用中,给定一个查询图像,目标是从参考库中检索相似的图像,参考库的语义注释可以为医学专业人员提供对查询图像的可能解释的更深入了解。如果系统检索到与查询图像不相似的图像,那么用户可能不太信任该系统;另一方面,检索到与查询图像表面相似但语义上不相关的图像是不可取的,因为这可能会导致用户做出错误的诊断。因此,学习一种既能保持视觉相似性又能保持语义相似性的距离度量是很重要的。我们强调,尽管我们的研究侧重于医学图像检索,但这项工作所解决的问题对于许多图像检索系统都至关重要。我们提出了一种用于距离度量学习的提升框架,旨在同时保留视觉和语义相似性。提升框架首先使用带有标签对的边信息学习二进制表示,然后使用学习到的二进制表示计算加权汉明距离作为距离。提出了一种提升算法来有效地学习距离函数。我们在带有交互式搜索辅助决策支持(ISADS)系统的乳腺图像参考库和医学图像数据集上评估了所提出的算法。我们的结果表明,与用于距离度量学习的最新方法相比,提升框架在检索准确性方面具有优势,且计算成本低得多。在 COREL 集合上的额外评估表明,我们的算法对常规图像数据集也很有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验