Suppr超能文献

基于高阶图像统计和新颖的形状不对称性度量的克罗恩病检测的有监督学习方法。

A supervised learning approach for Crohn's disease detection using higher-order image statistics and a novel shape asymmetry measure.

机构信息

Department of Computer Science, ETH Zurich, Zurich, Switzerland,

出版信息

J Digit Imaging. 2013 Oct;26(5):920-31. doi: 10.1007/s10278-013-9576-9.

Abstract

Increasing incidence of Crohn's disease (CD) in the Western world has made its accurate diagnosis an important medical challenge. The current reference standard for diagnosis, colonoscopy, is time-consuming and invasive while magnetic resonance imaging (MRI) has emerged as the preferred noninvasive procedure over colonoscopy. Current MRI approaches assess rate of contrast enhancement and bowel wall thickness, and rely on extensive manual segmentation for accurate analysis. We propose a supervised learning method for the identification and localization of regions in abdominal magnetic resonance images that have been affected by CD. Low-level features like intensity and texture are used with shape asymmetry information to distinguish between diseased and normal regions. Particular emphasis is laid on a novel entropy-based shape asymmetry method and higher-order statistics like skewness and kurtosis. Multi-scale feature extraction renders the method robust. Experiments on real patient data show that our features achieve a high level of accuracy and perform better than two competing methods.

摘要

在西方世界,克罗恩病(CD)的发病率不断上升,因此准确诊断该病是一项重要的医学挑战。目前的诊断参考标准——结肠镜检查既耗时又具侵入性,而磁共振成像(MRI)已成为优于结肠镜检查的首选非侵入性检查方法。目前的 MRI 方法评估对比增强和肠壁厚度的速度,并依靠广泛的手动分割进行准确分析。我们提出了一种监督学习方法,用于识别和定位腹部磁共振图像中受 CD 影响的区域。使用强度和纹理等低级特征以及形状不对称信息来区分患病和正常区域。特别强调一种新颖的基于熵的形状不对称方法以及偏度和峰度等高阶统计量。多尺度特征提取使该方法具有鲁棒性。对真实患者数据的实验表明,我们的特征具有很高的准确性,并且比两种竞争方法表现更好。

相似文献

3
Semi-supervised and active learning for automatic segmentation of Crohn's disease.用于克罗恩病自动分割的半监督和主动学习
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):214-21. doi: 10.1007/978-3-642-40763-5_27.

本文引用的文献

1
Computational modeling for assessment of IBD: to be or not to be?用于评估炎症性肠病的计算建模:何去何从?
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:3974-7. doi: 10.1109/EMBC.2012.6346837.
4
5
X-ray categorization and spatial localization of chest pathologies.胸部病变的X线分类及空间定位
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):199-206. doi: 10.1007/978-3-642-23626-6_25.
7
Identification of paediatric tuberculosis from airway shape features.通过气道形状特征识别儿童结核病。
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):133-40. doi: 10.1007/978-3-642-23626-6_17.
9
Focal biologically inspired feature for glaucoma type classification.用于青光眼类型分类的局灶性生物启发特征。
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):91-8. doi: 10.1007/978-3-642-23626-6_12.
10
Targeted optical biopsies for surveillance endoscopies.用于监测内镜检查的靶向光学活检。
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):83-90. doi: 10.1007/978-3-642-23626-6_11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验