Suppr超能文献

弥散张量成像的全度量作为一种有效的胶质瘤鉴别工具。

Total magnitude of diffusion tensor imaging as an effective tool for the differentiation of glioma.

机构信息

Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India.

出版信息

Eur J Radiol. 2013 May;82(5):857-61. doi: 10.1016/j.ejrad.2012.12.027. Epub 2013 Feb 8.

Abstract

OBJECTIVES

The study aims to evaluate the difference in diffusion properties between high grade glioma and low grade glioma by measuring the total magnitude of diffusion tensor (L), and its isotropic (p) and anisotropic (q) components.

METHODS

The diffusion tensor parameters p, q, L and FA from the tumor area, adjacent area to the tumor and corresponding contra lateral normal area of 30 high grade glioma and 49 low grade glioma were calculated. Chi square analysis was done to find the changes in age and sex. One Way ANOVA was performed to compare the mean and ROC curve analysis to confirm the discriminative sensitivity.

RESULTS

Major variation in the mean values of p, L and FA was observed in different brain areas considered. Variation in the p and L values between low grade and high grade glioma were statistically significant (p<0.001) and their ROC curve analysis yielded 93.9% and 91.8% sensitivity and 53.3% specificity respectively.

CONCLUSION

Measurement of the isotropic component p and the total value of diffusion tensor L can be effectively correlated with different grades of glioma and can be used to study the diffusion properties of tumor affected brain.

摘要

目的

本研究旨在通过测量各向同性(p)和各向异性(q)扩散张量分量以及总扩散张量值(L),来评估高级别胶质瘤与低级别胶质瘤之间的扩散特性差异。

方法

对 30 例高级别胶质瘤和 49 例低级别胶质瘤患者肿瘤区、肿瘤旁区以及对侧正常区的扩散张量参数 p、q、L 和 FA 值进行计算。采用卡方检验分析年龄和性别变化,采用单因素方差分析比较平均值,并进行 ROC 曲线分析以确认判别敏感性。

结果

在不同考虑的脑区中,p、L 和 FA 的平均值存在较大变化。低级别和高级别胶质瘤之间的 p 值和 L 值存在显著差异(p<0.001),ROC 曲线分析得出的敏感性分别为 93.9%和 91.8%,特异性分别为 53.3%。

结论

各向同性分量 p 和总扩散张量值 L 的测量可以与不同级别胶质瘤有效相关,可用于研究肿瘤影响大脑的扩散特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验