Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA.
Hum Mol Genet. 2013 May 15;22(10):2041-54. doi: 10.1093/hmg/ddt055. Epub 2013 Feb 7.
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the loss-of-function of fragile X mental retardation protein (FMRP). The loss of FMRP function in neurons abolishes its suppression on mGluR1/5-dependent dendritic protein translation, enhancing mGluR1/5-dependent synaptic plasticity and other disease phenotypes in FXS. In this study, we describe a new activation function of FMRP in regulating protein expression in astroglial cells. We found that astroglial glutamate transporter subtype glutamate transporter 1 (GLT1) and glutamate uptake is significantly reduced in the cortex of fmr1(-/-) mice. Correspondingly, neuronal excitability is also enhanced in acute fmr1(-/-) (but not in fmr1(+/+) control) cortical slices treated with low doses (10 μm) of the GLT1-specific inhibitor dihydrokainate (DHK). Using mismatched astrocyte and neuron co-cultures, we demonstrate that the loss of astroglial (but not neuronal) FMRP particularly reduces neuron-dependent GLT1 expression and glutamate uptake in co-cultures. Interestingly, protein (but not mRNA) expression and the (S)-3,5-dihydroxyphenylglycine-dependent Ca(2+) responses of astroglial mGluR5 receptor are also selectively reduced in fmr1(-/-) astrocytes and brain slices, attenuating neuron-dependent GLT1 expression. Subsequent FMRP immunoprecipitation and QRT-PCR analysis showed that astroglial mGluR5 (but not GLT1) mRNA is associated with FMRP. In summary, our results provide evidence that FMRP positively regulates translational expression of mGluR5 in astroglial cells, and FMRP-dependent down-regulation of mGluR5 underlies GLT1 dysregulation in fmr1(-/-) astrocytes. The dysregulation of GLT1 and reduced glutamate uptake may potentially contribute to enhanced neuronal excitability observed in the mouse model of FXS.
脆性 X 综合征(FXS)是一种神经发育障碍,由脆性 X 智力低下蛋白(FMRP)功能丧失引起。神经元中 FMRP 功能的丧失消除了其对 mGluR1/5 依赖性树突蛋白翻译的抑制作用,增强了 FXS 中 mGluR1/5 依赖性突触可塑性和其他疾病表型。在这项研究中,我们描述了 FMRP 在调节星形胶质细胞中蛋白表达的新激活功能。我们发现,fmr1(-/-) 小鼠皮质中星形胶质谷氨酸转运体亚型谷氨酸转运体 1(GLT1)和谷氨酸摄取显著减少。相应地,用低剂量(10 μm)的 GLT1 特异性抑制剂二氢酮酸(DHK)处理急性 fmr1(-/-)(而非 fmr1(+/+)对照)皮质切片时,神经元兴奋性也增强。通过不匹配的星形胶质细胞和神经元共培养,我们证明了星形胶质细胞(而非神经元)FMRP 的缺失特别减少了共培养中神经元依赖性 GLT1 表达和谷氨酸摄取。有趣的是,fmr1(-/-) 星形胶质细胞和脑片中,蛋白质(而非 mRNA)表达和(S)-3,5-二羟基苯甘氨酸依赖性 Ca(2+)反应的星形胶质细胞 mGluR5 受体也选择性减少,减弱了神经元依赖性 GLT1 表达。随后的 FMRP 免疫沉淀和 QRT-PCR 分析表明,星形胶质细胞 mGluR5(而非 GLT1)mRNA 与 FMRP 相关。总之,我们的结果提供了证据,表明 FMRP 正向调节星形胶质细胞中 mGluR5 的翻译表达,而 FMRP 依赖性 mGluR5 下调是 fmr1(-/-) 星形胶质细胞中 GLT1 失调的基础。GLT1 的失调和谷氨酸摄取减少可能有助于增强 FXS 小鼠模型中观察到的神经元兴奋性。