Suppr超能文献

螺旋卷式压力延迟渗透膜组件用于渗透发电的实验研究。

Experimental investigation of a spiral-wound pressure-retarded osmosis membrane module for osmotic power generation.

机构信息

Department of Thermal Systems, Korea Institute of Machinery and Materials, Daejeon 305-343, Republic of Korea.

出版信息

Environ Sci Technol. 2013 Mar 19;47(6):2966-73. doi: 10.1021/es304060d. Epub 2013 Feb 28.

Abstract

Pressure-retarded osmosis (PRO) uses a semipermeable membrane to produce renewable energy from salinity-gradient energy. A spiral-wound (SW) design is one module configuration of the PRO membrane. The SW PRO membrane module has two different flow paths, axial and spiral, and two different spacers, net and tricot, for draw- and feed-solution streams, respectively. This study used an experimental approach to investigate the relationship between two interacting flow streams in a prototype SW PRO membrane module, and the adverse impact of a tricot fabric spacer (as a feed spacer) on the PRO performance, including water flux and power density. The presence of the tricot spacer inside the membrane envelope caused a pressure drop due to flow resistance and reduced osmotic water permeation due to the shadow effect. The dilution of the draw solution by water permeation resulted in the reduction of the osmotic pressure difference along a pressure vessel. For a 0.6 M NaCl solution and tap water, the water flux and corresponding maximum power density were 3.7 L m(-2)h(-1) and 1.0 W/m(2) respectively at a hydraulic pressure difference of 9.8 bar. The thickness and porosity of the tricot spacer should be optimized to achieve high SW PRO module performance.

摘要

压力延迟渗透(PRO)利用半透膜从盐度梯度能中产生可再生能源。螺旋缠绕(SW)设计是 PRO 膜的一种模块配置。SW PRO 膜模块具有两种不同的流动路径,轴向和螺旋,以及两种不同的间隔物,用于分别抽取和进料溶液流的网眼和提花。本研究采用实验方法研究了原型 SW PRO 膜模块中两个相互作用的流道之间的关系,以及提花织物间隔物(作为进料间隔物)对 PRO 性能的不利影响,包括水通量和功率密度。提花间隔物在膜包内部的存在由于流动阻力而导致压降,并由于阴影效应而降低了渗透水的渗透率。水渗透导致稀释了抽取溶液,从而降低了沿压力容器的渗透压差。对于 0.6 M NaCl 溶液和自来水,在 9.8 巴的液压差下,水通量和相应的最大功率密度分别为 3.7 L m(-2)h(-1)和 1.0 W/m(2)。提花间隔物的厚度和孔隙率应进行优化,以实现高 SW PRO 模块性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验