Suppr超能文献

基于聚类的因子旋转。

A cluster-based factor rotation.

作者信息

Yamamoto Michio, Jennrich Robert I

机构信息

Osaka University, Japan.

出版信息

Br J Math Stat Psychol. 2013 Nov;66(3):488-502. doi: 10.1111/bmsp.12007. Epub 2013 Feb 12.

Abstract

A new oblique factor rotation method is proposed, the aim of which is to identify a simple and well-clustered structure in a factor loading matrix. A criterion consisting of the complexity of a factor loading matrix and a between-cluster dissimilarity is optimized using the gradient projection algorithm and the k-means algorithm. It is shown that if there is an oblique rotation of an initial loading matrix that has a perfect simple structure, then the proposed method with Kaiser's normalization will produce the perfect simple structure. Although many rotation methods can also recover a perfect simple structure, they perform poorly when a perfect simple structure is not possible. In this case, the new method tends to perform better because it clusters the loadings without requiring the clusters to be perfect. Artificial and real data analyses demonstrate that the proposed method can give a simple structure, which the other methods cannot produce, and provides a more interpretable result than those of widely known rotation techniques.

摘要

提出了一种新的斜因子旋转方法,其目的是在因子载荷矩阵中识别出一种简单且聚类良好的结构。使用梯度投影算法和k均值算法对一个由因子载荷矩阵的复杂度和类间差异组成的准则进行优化。结果表明,如果对具有完美简单结构的初始载荷矩阵进行斜旋转,那么采用凯泽归一化的所提方法将产生完美简单结构。尽管许多旋转方法也能恢复完美简单结构,但当不可能有完美简单结构时,它们的表现很差。在这种情况下,新方法往往表现更好,因为它对载荷进行聚类,而不要求聚类是完美的。人工数据和实际数据分析表明,所提方法能够给出其他方法无法产生的简单结构,并且比那些广为人知的旋转技术提供更具可解释性的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验