Division of Cancer Prevention, Department of Medicine, Stony Brook University, HSC, T17-080, Stony Brook, NY 11794, USA.
Biochem Pharmacol. 2013 Apr 15;85(8):1195-202. doi: 10.1016/j.bcp.2013.01.031. Epub 2013 Feb 8.
Phospho-tyrosol-indomethacin (PTI; MPI 621), a novel anti-cancer agent, is more potent and safer than conventional indomethacin. Here, we show that PTI was extensively metabolized in vitro and in vivo. PTI was rapidly hydrolyzed by carboxylesterases to generate indomethacin as its major metabolite in the liver microsomes and rats. PTI additionally undergoes cytochromes P450 (CYP)-mediated hydroxylation at its tyrosol moiety and O-demethylation at its indomethacin moiety. Of the five major human CYPs, CYP3A4 and CYP2D6 catalyze the hydroxylation and O-demethylation reactions of PTI, respectively; whereas CYP1A2, 2C9 and 2C19 are inactive towards PTI. In contrast to PTI, indomethacin is primarily O-demethylated by CYP2C9, which prefers acidic substrates. The hydrolyzed and O-demethylated metabolites of PTI are further glucuronidated and sulfated, facilitating drug elimination and detoxification. We observed substantial inter-species differences in the metabolic rates of PTI. Among the liver microsomes from various species, PTI was the most rapidly hydrolyzed, hydroxylated and O-demethylated in mouse, human and rat liver microsomes, respectively. These results reflect the differential expression patterns of carboxylesterase and CYP isoforms among these species. Of the human microsomes from various tissues, PTI underwent more rapid carboxylesterase- and CYP-catalyzed reactions in liver and intestine microsomes than in kidney and lung microsomes. Together, our results establish the metabolic pathways of PTI, reveal significant inter-species differences in its metabolism, and provide insights into the underlying biochemical mechanisms.
磷酸酪醇吲哚美辛(PTI;MPI 621)是一种新型的抗癌药物,比传统的吲哚美辛更有效且更安全。在这里,我们表明 PTI 在体外和体内被广泛代谢。PTI 在肝微粒体和大鼠中迅速被羧酸酯酶水解,生成其主要代谢物吲哚美辛。PTI 还会在其酪醇部分被细胞色素 P450(CYP)介导的羟化和其吲哚美辛部分的 O-去甲基化。在五种主要的人 CYP 中,CYP3A4 和 CYP2D6 分别催化 PTI 的羟化和 O-去甲基化反应;而 CYP1A2、2C9 和 2C19 对 PTI 无活性。与 PTI 相反,吲哚美辛主要由 CYP2C9 进行 O-去甲基化,CYP2C9 更喜欢酸性底物。PTI 的水解和 O-去甲基化代谢物进一步被葡萄糖醛酸化和硫酸化,促进药物消除和解毒。我们观察到 PTI 的代谢率在种间存在显著差异。在来自不同物种的肝微粒体中,PTI 在小鼠、人和大鼠肝微粒体中分别被最快地水解、羟化和 O-去甲基化。这些结果反映了这些物种中羧酸酯酶和 CYP 同工型的差异表达模式。在来自不同组织的人类微粒体中,PTI 在肝和肠微粒体中比在肾和肺微粒体中经历更快速的羧酸酯酶和 CYP 催化反应。总之,我们的结果确定了 PTI 的代谢途径,揭示了其代谢在种间存在显著差异,并提供了对潜在生化机制的深入了解。