Ames Laboratory, US Department of Energy, and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA.
J Phys Condens Matter. 2013 Mar 13;25(10):105302. doi: 10.1088/0953-8984/25/10/105302. Epub 2013 Feb 12.
Structural and electronic properties, including deformation, magnetic moment, Mulliken population, bond order, as well as electronic transport properties, of zigzag graphene nanoribbon (ZGNR) with Co adatoms on hollow sites are investigated by quasi-atomic minimal basis orbits (QUAMBOs), a first-principles tight binding (TB) scheme based on density functional theory (DFT), combined with a non-equilibrium Green's function. For electronic transport, below the Fermi level the transmission is strongly suppressed and spin dependent as a result of magnetism by Co adatom adsorption, while above the Fermi level the transmission is slightly distorted and spin independent. Due to the local environment dependence of QUAMBOs-TB parameters, we construct QUAMBOs-TB parameters of ZGNR leads and ZGNR with Co adatoms on hollow center sites by a divide-and-conquer approach, and accurately reproduce the electronic transmission behavior. Our QUAMBO-NEGF method is a new and promising way of examining electronic transport in large-scale systems.
采用基于密度泛函理论(DFT)的准原子最小基轨道(QUAMBO)和第一性原理紧束缚(TB)方案,并结合非平衡格林函数,研究了 Co 原子占据空位的锯齿型石墨烯纳米带(ZGNR)的结构和电子性质,包括变形、磁矩、Mulliken 布居、键序以及电子输运性质。对于电子输运,在费米能级以下,由于 Co 原子吸附的磁性,传输强烈抑制且具有自旋依赖性,而在费米能级以上,传输略有扭曲且与自旋无关。由于 QUAMBO-TB 参数的局部环境依赖性,我们通过分而治之的方法构建了 ZGNR 引线和 Co 原子占据空位的 ZGNR 的 QUAMBO-TB 参数,并准确地再现了电子传输行为。我们的 QUAMBO-NEGF 方法是研究大规模体系中电子输运的一种新的、有前途的方法。