Max Planck Institute for Intelligent Systems, Tübingen, Germany.
Magn Reson Med. 2013 Dec;70(6):1608-18. doi: 10.1002/mrm.24615. Epub 2013 Feb 11.
Subject motion can severely degrade MR images. A retrospective motion correction algorithm, Gradient-based motion correction, which significantly reduces ghosting and blurring artifacts due to subject motion was proposed. The technique uses the raw data of standard imaging sequences; no sequence modifications or additional equipment such as tracking devices are required. Rigid motion is assumed.
The approach iteratively searches for the motion trajectory yielding the sharpest image as measured by the entropy of spatial gradients. The vast space of motion parameters is efficiently explored by gradient-based optimization with a convergence guarantee.
The method has been evaluated on both synthetic and real data in two and three dimensions using standard imaging techniques. MR images are consistently improved over different kinds of motion trajectories. Using a graphics processing unit implementation, computation times are in the order of a few minutes for a full three-dimensional volume.
The presented technique can be an alternative or a complement to prospective motion correction methods and is able to improve images with strong motion artifacts from standard imaging sequences without requiring additional data.
受试者运动可严重降低磁共振图像质量。本文提出了一种基于梯度的运动校正的回顾性运动校正算法,该算法可显著减少因受试者运动导致的鬼影和模糊伪影。该技术使用标准成像序列的原始数据;不需要对序列进行修改或添加跟踪设备等额外设备。假设运动是刚性的。
该方法通过空间梯度熵测量来迭代搜索产生最清晰图像的运动轨迹。通过基于梯度的优化进行高效的运动参数搜索,保证收敛。
该方法已在二维和三维中使用标准成像技术对合成和真实数据进行了评估。与不同的运动轨迹相比,MR 图像始终得到改善。使用图形处理单元实现,对于完整的三维体积,计算时间约为几分钟。
所提出的技术可以作为前瞻性运动校正方法的替代或补充,并且能够在不要求额外数据的情况下改善来自标准成像序列的具有强烈运动伪影的图像。