Suppr超能文献

MR 图像的盲式回顾性运动校正。

Blind retrospective motion correction of MR images.

机构信息

Max Planck Institute for Intelligent Systems, Tübingen, Germany.

出版信息

Magn Reson Med. 2013 Dec;70(6):1608-18. doi: 10.1002/mrm.24615. Epub 2013 Feb 11.

Abstract

PURPOSE

Subject motion can severely degrade MR images. A retrospective motion correction algorithm, Gradient-based motion correction, which significantly reduces ghosting and blurring artifacts due to subject motion was proposed. The technique uses the raw data of standard imaging sequences; no sequence modifications or additional equipment such as tracking devices are required. Rigid motion is assumed.

METHODS

The approach iteratively searches for the motion trajectory yielding the sharpest image as measured by the entropy of spatial gradients. The vast space of motion parameters is efficiently explored by gradient-based optimization with a convergence guarantee.

RESULTS

The method has been evaluated on both synthetic and real data in two and three dimensions using standard imaging techniques. MR images are consistently improved over different kinds of motion trajectories. Using a graphics processing unit implementation, computation times are in the order of a few minutes for a full three-dimensional volume.

CONCLUSION

The presented technique can be an alternative or a complement to prospective motion correction methods and is able to improve images with strong motion artifacts from standard imaging sequences without requiring additional data.

摘要

目的

受试者运动可严重降低磁共振图像质量。本文提出了一种基于梯度的运动校正的回顾性运动校正算法,该算法可显著减少因受试者运动导致的鬼影和模糊伪影。该技术使用标准成像序列的原始数据;不需要对序列进行修改或添加跟踪设备等额外设备。假设运动是刚性的。

方法

该方法通过空间梯度熵测量来迭代搜索产生最清晰图像的运动轨迹。通过基于梯度的优化进行高效的运动参数搜索,保证收敛。

结果

该方法已在二维和三维中使用标准成像技术对合成和真实数据进行了评估。与不同的运动轨迹相比,MR 图像始终得到改善。使用图形处理单元实现,对于完整的三维体积,计算时间约为几分钟。

结论

所提出的技术可以作为前瞻性运动校正方法的替代或补充,并且能够在不要求额外数据的情况下改善来自标准成像序列的具有强烈运动伪影的图像。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验