Suppr超能文献

磁共振图像的盲多刚体回顾性运动校正

Blind multirigid retrospective motion correction of MR images.

作者信息

Loktyushin Alexander, Nickisch Hannes, Pohmann Rolf, Schölkopf Bernhard

机构信息

Max Planck Institute for Intelligent Systems, Empirical Inference Department, Tübingen, Germany.

出版信息

Magn Reson Med. 2015 Apr;73(4):1457-68. doi: 10.1002/mrm.25266. Epub 2014 Apr 23.

Abstract

PURPOSE

Physiological nonrigid motion is inevitable when imaging, e.g., abdominal viscera, and can lead to serious deterioration of the image quality. Prospective techniques for motion correction can handle only special types of nonrigid motion, as they only allow global correction. Retrospective methods developed so far need guidance from navigator sequences or external sensors. We propose a fully retrospective nonrigid motion correction scheme that only needs raw data as an input.

METHODS

Our method is based on a forward model that describes the effects of nonrigid motion by partitioning the image into patches with locally rigid motion. Using this forward model, we construct an objective function that we can optimize with respect to both unknown motion parameters per patch and the underlying sharp image.

RESULTS

We evaluate our method on both synthetic and real data in 2D and 3D. In vivo data was acquired using standard imaging sequences. The correction algorithm significantly improves the image quality. Our compute unified device architecture (CUDA)-enabled graphic processing unit implementation ensures feasible computation times.

CONCLUSION

The presented technique is the first computationally feasible retrospective method that uses the raw data of standard imaging sequences, and allows to correct for nonrigid motion without guidance from external motion sensors.

摘要

目的

在对腹部脏器等进行成像时,生理非刚性运动不可避免,这会导致图像质量严重下降。前瞻性运动校正技术只能处理特殊类型的非刚性运动,因为它们仅允许全局校正。目前已开发的回顾性方法需要导航序列或外部传感器的引导。我们提出了一种完全回顾性的非刚性运动校正方案,该方案仅需原始数据作为输入。

方法

我们的方法基于一个前向模型,该模型通过将图像划分为具有局部刚性运动的小块来描述非刚性运动的影响。利用这个前向模型,我们构建了一个目标函数,该函数可以针对每个小块的未知运动参数和潜在的清晰图像进行优化。

结果

我们在二维和三维的合成数据和真实数据上评估了我们的方法。体内数据使用标准成像序列采集。校正算法显著提高了图像质量。我们基于计算统一设备架构(CUDA)的图形处理单元实现确保了可行的计算时间。

结论

所提出的技术是第一种计算上可行的回顾性方法,它使用标准成像序列的原始数据,并且无需外部运动传感器的引导即可校正非刚性运动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验