Suppr超能文献

DCNL1 作为底物传感器和 Cullin 2-RING 连接酶的激活剂发挥作用。

DCNL1 functions as a substrate sensor and activator of cullin 2-RING ligase.

机构信息

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.

出版信息

Mol Cell Biol. 2013 Apr;33(8):1621-31. doi: 10.1128/MCB.01342-12. Epub 2013 Feb 11.

Abstract

Substrate engagement by F-box proteins promotes NEDD8 modification of cullins, which is necessary for the activation of cullin-RING E3 ubiquitin ligases (CRLs). However, the mechanism by which substrate recruitment triggers cullin neddylation remains unclear. Here, we identify DCNL1 (defective in cullin neddylation 1-like 1) as a component of CRL2 called ECV (elongins BC/CUL2/VHL) and show that molecular suppression of DCNL1 attenuates CUL2 neddylation. DCNL1 via its DAD patch binds to CUL2 but is also able to bind VHL independent of CUL2 and the DAD patch. The engagement of the substrate hypoxia-inducible factor 1α (HIF1α) to the substrate receptor VHL increases DCNL1 binding to VHL as well as to CUL2. Notably, an engineered mutant form of HIF1α that associates with CUL2, but not DCNL1, fails to trigger CUL2 neddylation and retains ECV in an inactive state. These findings support a model in which substrate engagement prompts DCNL1 recruitment that facilitates the initiation of CUL2 neddylation and define DCNL1 as a "substrate sensor switch" for ECV activation.

摘要

F-box 蛋白与底物的结合促进了 cullin 的 NEDD8 修饰,这对于 cullin-RING E3 泛素连接酶(CRL)的激活是必要的。然而,底物募集触发 cullin 类泛素化的机制尚不清楚。在这里,我们鉴定出 DCNL1(cullin 类泛素化缺陷 1 样 1)作为 CRL2 的一个称为 ECV(elongins BC/CUL2/VHL)的组成部分,并表明 DCNL1 的分子抑制减弱了 CUL2 的类泛素化。DCNL1 通过其 DAD 结构域结合 CUL2,但也能够独立于 CUL2 和 DAD 结构域结合 VHL。底物低氧诱导因子 1α(HIF1α)与底物受体 VHL 的结合会增加 DCNL1 与 VHL 以及 CUL2 的结合。值得注意的是,一种与 CUL2 结合但不与 DCNL1 结合的工程突变形式的 HIF1α,不能触发 CUL2 的类泛素化,并使 ECV 保持非活性状态。这些发现支持了这样一种模型,即底物的结合促使 DCNL1 的募集,从而促进了 CUL2 的类泛素化的起始,并将 DCNL1 定义为 ECV 激活的“底物传感器开关”。

相似文献

1
DCNL1 functions as a substrate sensor and activator of cullin 2-RING ligase.
Mol Cell Biol. 2013 Apr;33(8):1621-31. doi: 10.1128/MCB.01342-12. Epub 2013 Feb 11.
2
Coupled monoubiquitylation of the co-E3 ligase DCNL1 by Ariadne-RBR E3 ubiquitin ligases promotes cullin-RING ligase complex remodeling.
J Biol Chem. 2019 Feb 22;294(8):2651-2664. doi: 10.1074/jbc.RA118.005861. Epub 2018 Dec 26.
3
Quantitative analyses for effects of neddylation on CRL2 substrate ubiquitination and degradation.
Protein Sci. 2021 Nov;30(11):2338-2345. doi: 10.1002/pro.4176. Epub 2021 Sep 13.
4
Role of the NEDD8 modification of Cul2 in the sequential activation of ECV complex.
Neoplasia. 2006 Nov;8(11):956-63. doi: 10.1593/neo.06520.
6
Substrate-mediated regulation of cullin neddylation.
J Biol Chem. 2007 Jun 8;282(23):17032-40. doi: 10.1074/jbc.M701153200. Epub 2007 Apr 17.
8
NEDD8 acts as a 'molecular switch' defining the functional selectivity of VHL.
EMBO Rep. 2008 May;9(5):486-91. doi: 10.1038/embor.2008.19. Epub 2008 Mar 7.
10
Characterization of the mammalian family of DCN-type NEDD8 E3 ligases.
J Cell Sci. 2016 Apr 1;129(7):1441-54. doi: 10.1242/jcs.181784. Epub 2016 Feb 18.

引用本文的文献

1
Emerging Roles of Cullin-RING Ubiquitin Ligases in Cardiac Development.
Cells. 2024 Jan 26;13(3):235. doi: 10.3390/cells13030235.
2
Neddylation is required for perinatal cardiac development through stimulation of metabolic maturation.
Cell Rep. 2023 Jan 31;42(1):112018. doi: 10.1016/j.celrep.2023.112018. Epub 2023 Jan 19.
4
Coupled monoubiquitylation of the co-E3 ligase DCNL1 by Ariadne-RBR E3 ubiquitin ligases promotes cullin-RING ligase complex remodeling.
J Biol Chem. 2019 Feb 22;294(8):2651-2664. doi: 10.1074/jbc.RA118.005861. Epub 2018 Dec 26.
5
HIF-2α-pVHL complex reveals broad genotype-phenotype correlations in HIF-2α-driven disease.
Nat Commun. 2018 Aug 22;9(1):3359. doi: 10.1038/s41467-018-05554-1.
7
DCUN1D3 activates SCFSKP2 ubiquitin E3 ligase activity and cell cycle progression under UV damage.
Oncotarget. 2016 Sep 6;7(36):58483-58491. doi: 10.18632/oncotarget.11302.
8
The structure and regulation of Cullin 2 based E3 ubiquitin ligases and their biological functions.
Cell Div. 2016 May 23;11:7. doi: 10.1186/s13008-016-0020-7. eCollection 2016.
9
Regulation of glucose metabolism by p62/SQSTM1 through HIF1α.
J Cell Sci. 2016 Feb 15;129(4):817-30. doi: 10.1242/jcs.178756. Epub 2016 Jan 7.
10

本文引用的文献

1
The SOCS2 ubiquitin ligase complex regulates growth hormone receptor levels.
PLoS One. 2011;6(9):e25358. doi: 10.1371/journal.pone.0025358. Epub 2011 Sep 29.
2
Oxygen sensing, homeostasis, and disease.
N Engl J Med. 2011 Aug 11;365(6):537-47. doi: 10.1056/NEJMra1011165.
4
NEDD8 pathways in cancer, Sine Quibus Non.
Cancer Cell. 2011 Feb 15;19(2):168-76. doi: 10.1016/j.ccr.2011.01.002.
5
Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics.
Cell. 2010 Dec 10;143(6):951-65. doi: 10.1016/j.cell.2010.11.017.
6
Structural assembly of cullin-RING ubiquitin ligase complexes.
Curr Opin Struct Biol. 2010 Dec;20(6):714-21. doi: 10.1016/j.sbi.2010.08.010. Epub 2010 Sep 27.
7
A dual E3 mechanism for Rub1 ligation to Cdc53.
Mol Cell. 2010 Sep 10;39(5):784-96. doi: 10.1016/j.molcel.2010.08.030.
8
The human Dcn1-like protein DCNL3 promotes Cul3 neddylation at membranes.
Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12365-70. doi: 10.1073/pnas.0812528106. Epub 2009 Jul 14.
9
Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways.
Nat Rev Mol Cell Biol. 2009 May;10(5):319-31. doi: 10.1038/nrm2673. Epub 2009 Apr 8.
10
Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation.
Mol Cell. 2008 Oct 10;32(1):21-31. doi: 10.1016/j.molcel.2008.08.021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验