Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
Cell. 2010 Dec 10;143(6):951-65. doi: 10.1016/j.cell.2010.11.017.
Dynamic reorganization of signaling systems frequently accompanies pathway perturbations, yet quantitative studies of network remodeling by pathway stimuli are lacking. Here, we report the development of a quantitative proteomics platform centered on multiplex absolute quantification (AQUA) technology to elucidate the architecture of the cullin-RING ubiquitin ligase (CRL) network and to evaluate current models of dynamic CRL remodeling. Current models suggest that CRL complexes are controlled by cycles of CRL deneddylation and CAND1 binding. Contrary to expectations, acute CRL inhibition with MLN4924, an inhibitor of the NEDD8-activating enzyme, does not result in a global reorganization of the CRL network. Examination of CRL complex stoichiometry reveals that, independent of cullin neddylation, a large fraction of cullins are assembled with adaptor modules, whereas only a small fraction are associated with CAND1. These studies suggest an alternative model of CRL dynamicity where the abundance of adaptor modules, rather than cycles of neddylation and CAND1 binding, drives CRL network organization.
信号系统的动态重组常常伴随着途径的扰动,但缺乏对途径刺激引起的网络重塑的定量研究。在这里,我们报告了一种以多重绝对定量(AQUA)技术为中心的定量蛋白质组学平台的开发,以阐明连接酶(CRL)网络的结构,并评估动态 CRL 重塑的当前模型。当前的模型表明,CRL 复合物受 CRL 脱泛素化和 CAND1 结合的循环控制。与预期相反,用 MLN4924(一种 NEDD8 激活酶抑制剂)急性抑制 CRL 不会导致 CRL 网络的全局重组。对 CRL 复合物计量的研究表明,与连接酶 neddylation 无关,很大一部分连接酶与衔接模块组装,而只有一小部分与 CAND1 相关。这些研究表明了 CRL 动态性的另一种模型,其中衔接模块的丰度而不是 neddylation 和 CAND1 结合的循环,驱动 CRL 网络的组织。