Suppr超能文献

loaf-like ZnMn₂O₄ 纳米棒的简便合成及其在锂离子电池中的优异性能。

Facile synthesis of loaf-like ZnMn₂O₄ nanorods and their excellent performance in Li-ion batteries.

机构信息

Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024, China.

出版信息

Nanoscale. 2013 Mar 21;5(6):2442-7. doi: 10.1039/c3nr33211j.

Abstract

Binary transition metal oxides have been attracting extensive attention as promising anode materials for lithium-ion batteries, due to their high theoretical specific capacity, superior rate performance and good cycling stability. Here, loaf-like ZnMn2O4 nanorods with diameters of 80-150 nm and lengths of several micrometers are successfully synthesized by annealing MnOOH nanorods and Zn(OH)2 powders at 700 °C for 2 h. The electrochemical properties of the loaf-like ZnMn2O4 nanorods as an anode material are investigated in terms of their reversible capacity, and cycling performance for lithium ion batteries. The loaf-like ZnMn2O4 nanorods exhibit a reversible capacity of 517 mA h g(-1) at a current density of 500 mA g(-1) after 100 cycles. The reversible capacity of the nanorods still could be kept at 457 mA h g(-1) even at 1000 mA g(-1). The improved electrochemical performance can be ascribed to the one-dimensional shape and the porous structure of the loaf-like ZnMn2O4 nanorods, which offers the electrode convenient electron transport pathways and sufficient void spaces to tolerate the volume change during the Li(+) intercalation. These results suggest the promising potential of the loaf-like ZnMn2O4 nanorods in lithium-ion batteries.

摘要

层状结构的 ZnMn2O4 纳米棒作为锂离子电池的阳极材料具有较高的理论比容量、良好的倍率性能和循环稳定性,受到了广泛的关注。本工作通过在 700°C 下退火 MnOOH 纳米棒和 Zn(OH)2 粉末 2 h,成功制备出了直径为 80-150nm、长度为数微米的层状结构的 ZnMn2O4 纳米棒。通过测试其可逆容量和循环性能,研究了层状结构的 ZnMn2O4 纳米棒作为锂离子电池阳极材料的电化学性能。在 500 mA g-1 的电流密度下经过 100 次循环后,层状结构的 ZnMn2O4 纳米棒可逆比容量为 517 mA h g-1。当电流密度提高到 1000 mA g-1 时,可逆比容量仍能保持在 457 mA h g-1。优异的电化学性能归因于层状结构的 ZnMn2O4 纳米棒的一维形貌和多孔结构,这为电极提供了方便的电子传输途径和充足的空间来容纳锂离子嵌入过程中的体积变化。这些结果表明层状结构的 ZnMn2O4 纳米棒在锂离子电池中有很好的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验