Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P R China.
ACS Appl Mater Interfaces. 2013 Feb;5(3):981-8. doi: 10.1021/am3026294. Epub 2013 Jan 16.
Binary metal oxides have been regarded as ideal and potential anode materials, which can ameliorate and offset the electrochemical performance of the single metal oxides, such as reversible capacity, structural stability and electronic conductivity. In this work, monodisperse NiCo(2)O(4) mesoporous microspheres are fabricated by a facile solvothermal method followed by pyrolysis of the Ni(0.33)Co(0.67)CO(3) precursor. The Brunauer-Emmett-Teller (BET) surface area of NiCo(2)O(4) mesoporous microspheres is determined to be about 40.58 m(2) g(-1) with dominant pore diameter of 14.5 nm and narrow size distribution of 10-20 nm. Our as-prepared NiCo(2)O(4) products were evaluated as the anode material for the lithium-ion-battery (LIB) application. It is demonstrated that the special structural features of the NiCo(2)O(4) microspheres including uniformity of the surface texture, the integrity and porosity exert significant effect on the electrochemical performances. The discharge capacity of NiCo(2)O(4) microspheres could reach 1198 mA h g(-1) after 30 discharge-charge cycles at a current density of 200 mA g(-1). More importantly, when the current density increased to 800 mA·g(-1), it can render reversible capacity of 705 mA h g(-1) even after 500 cycles, indicating its potential applications for next-generation high power lithium ion batteries (LIBs). The superior battery performance is mainly attributed to the unique micro/nanostructure composed of interconnected NiCo(2)O(4) nanocrystals, which provides good electrolyte diffusion and large electrode-electrolyte contact area, and meanwhile reduces volume change during charge/discharge process. The strategy is simple but very effective, and because of its versatility, it could be extended to other high-capacity metal oxide anode materials for LIBs.
双金属氧化物被认为是理想和潜在的阳极材料,可改善和弥补单一金属氧化物的电化学性能,如可逆容量、结构稳定性和电子导电性。在这项工作中,通过简便的溶剂热法和 Ni(0.33)Co(0.67)CO3 前体的热解制备了单分散的 NiCo2O4 介孔微球。NiCo2O4 介孔微球的 Brunauer-Emmett-Teller(BET)比表面积约为 40.58 m2·g-1,主要孔径为 14.5nm,尺寸分布窄,为 10-20nm。我们制备的 NiCo2O4 产品被评估为锂离子电池(LIB)应用的阳极材料。结果表明,NiCo2O4 微球的特殊结构特征,包括表面纹理的均匀性、完整性和多孔性,对电化学性能有显著影响。在 200mA·g-1 的电流密度下,经过 30 次充放电循环后,NiCo2O4 微球的放电容量可达 1198 mA·h·g-1。更重要的是,当电流密度增加到 800mA·g-1 时,即使经过 500 次循环,它仍能提供 705 mA·h·g-1 的可逆容量,表明其在下一代高功率锂离子电池(LIBs)中有潜在的应用。优异的电池性能主要归因于由相互连接的 NiCo2O4 纳米晶组成的独特的微/纳米结构,该结构提供了良好的电解质扩散和大的电极-电解质接触面积,同时减少了充放电过程中的体积变化。该策略简单但非常有效,并且由于其通用性,它可以扩展到其他用于 LIB 的高容量金属氧化物阳极材料。