Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, 151-921, Republic of Korea.
Bioprocess Biosyst Eng. 2013 Jun;36(6):749-56. doi: 10.1007/s00449-013-0900-z. Epub 2013 Feb 13.
Wild-type Corynebacterium glutamicum was metabolically engineered to convert glucose and mannose into guanosine 5'-diphosphate (GDP)-L-fucose, a precursor of fucosyl-oligosaccharides, which are involved in various biological and pathological functions. This was done by introducing the gmd and wcaG genes of Escherichia coli encoding GDP-D-mannose-4,6-dehydratase and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase, respectively, which are known as key enzymes in the production of GDP-L-fucose from GDP-D-mannose. Coexpression of the genes allowed the recombinant C. glutamicum cells to produce GDP-L-fucose in a minimal medium containing glucose and mannose as carbon sources. The specific product formation rate was much higher during growth on mannose than on glucose. In addition, the specific product formation rate was further increased by coexpressing the endogenous phosphomanno-mutase gene (manB) and GTP-mannose-1-phosphate guanylyl-transferase gene (manC), which are involved in the conversion of mannose-6-phosphate into GDP-D-mannose. However, the overexpression of manA encoding mannose-6-phosphate isomerase, catalyzing interconversion of mannose-6-phosphate and fructose-6-phosphate showed a negative effect on formation of the target product. Overall, coexpression of gmd, wcaG, manB and manC in C. glutamicum enabled production of GDP-L-fucose at the specific rate of 0.11 mg g cell(-1) h(-1). The specific GDP-L-fucose content reached 5.5 mg g cell(-1), which is a 2.4-fold higher than that of the recombinant E. coli overexpressing gmd, wcaG, manB and manC under comparable conditions. Well-established metabolic engineering tools may permit optimization of the carbon and cofactor metabolisms of C. glutamicum to further improve their production capacity.
野生型谷氨酸棒杆菌经代谢工程改造,可将葡萄糖和甘露糖转化为鸟苷 5'-二磷酸(GDP)-L-岩藻糖,这是岩藻糖基寡糖的前体,岩藻糖基寡糖参与多种生物和病理功能。这是通过引入大肠杆菌的 gmd 和 wcaG 基因来实现的,这两个基因分别编码 GDP-D-甘露糖-4,6-脱水酶和 GDP-4-酮-6-脱氧-D-甘露糖-3,5-差向异构酶-4-还原酶,这两种酶是从 GDP-D-甘露糖生产 GDP-L-岩藻糖的关键酶。这些基因的共表达使重组谷氨酸棒杆菌细胞能够在含有葡萄糖和甘露糖作为碳源的最小培养基中产生 GDP-L-岩藻糖。在以甘露糖为生长基质时,特定产物的形成速率比以葡萄糖为生长基质时高得多。此外,通过共表达参与将甘露糖-6-磷酸转化为 GDP-D-甘露糖的内源性磷酸甘露糖变位酶基因(manB)和 GTP-甘露糖-1-磷酸鸟苷酰转移酶基因(manC),进一步提高了特定产物的形成速率。然而,过量表达编码甘露糖-6-磷酸异构酶的 manA,该酶催化甘露糖-6-磷酸和果糖-6-磷酸的相互转化,对目标产物的形成产生了负面影响。总的来说,在谷氨酸棒杆菌中共表达 gmd、wcaG、manB 和 manC,使 GDP-L-岩藻糖的特定产率达到 0.11mg g 细胞(-1) h(-1)。特定 GDP-L-岩藻糖含量达到 5.5mg g 细胞(-1),比在可比条件下过表达 gmd、wcaG、manB 和 manC 的重组大肠杆菌高 2.4 倍。成熟的代谢工程工具可能允许优化谷氨酸棒杆菌的碳和辅酶代谢,以进一步提高其生产能力。