Suppr超能文献

MELK 依赖性 FOXM1 磷酸化对于神经胶质瘤干细胞的增殖是必需的。

MELK-dependent FOXM1 phosphorylation is essential for proliferation of glioma stem cells.

机构信息

Department of Neurological Surgery, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.

出版信息

Stem Cells. 2013 Jun;31(6):1051-63. doi: 10.1002/stem.1358.

Abstract

Glioblastoma multiforme (GBM) is a life-threatening brain tumor. Accumulating evidence suggests that eradication of glioma stem-like cells (GSCs) in GBM is essential to achieve cure. The transcription factor FOXM1 has recently gained attention as a master regulator of mitotic progression of cancer cells in various organs. Here, we demonstrate that FOXM1 forms a protein complex with the mitotic kinase MELK in GSCs, leading to phosphorylation and activation of FOXM1 in a MELK kinase-dependent manner. This MELK-dependent activation of FOXM1 results in a subsequent increase in mitotic regulatory genes in GSCs. MELK-driven FOXM1 activation is regulated by the binding and subsequent trans-phosphorylation of FOXM1 by another kinase PLK1. Using mouse neural progenitor cells (NPCs), we found that transgenic expression of FOXM1 enhances, while siRNA-mediated gene silencing diminishes neurosphere formation, suggesting that FOXM1 is required for NPC growth. During tumorigenesis, FOXM1 expression sequentially increases as cells progress from NPCs, to pretumorigenic progenitors and GSCs. The antibiotic Siomycin A disrupts MELK-mediated FOXM1 signaling with a greater sensitivity in GSC compared to neural stem cell. Treatment with the first-line chemotherapy agent for GBM, Temozolomide, paradoxically enriches for both FOXM1 (+) and MELK (+) cells in GBM cells, and addition of Siomycin A to Temozolomide treatment in mice harboring GSC-derived intracranial tumors enhances the effects of the latter. Collectively, our data indicate that FOXM1 signaling through its direct interaction with MELK regulates key mitotic genes in GSCs in a PLK1-dependent manner and thus, this protein complex is a potential therapeutic target for GBM.

摘要

多形性胶质母细胞瘤(GBM)是一种危及生命的脑肿瘤。越来越多的证据表明,根除 GBM 中的神经胶质瘤干细胞(GSCs)对于实现治愈至关重要。转录因子 FOXM1 最近作为各种器官中癌细胞有丝分裂进程的主要调节剂引起了人们的关注。在这里,我们证明 FOXM1 在 GSCs 中与有丝分裂激酶 MELK 形成蛋白复合物,导致 FOXM1 的磷酸化和激活,这种方式依赖于 MELK 激酶。这种 MELK 依赖性 FOXM1 激活导致 GSCs 中随后增加有丝分裂调节基因。MELK 驱动的 FOXM1 激活受到另一种激酶 PLK1 通过结合和随后的反式磷酸化 FOXM1 的调节。使用小鼠神经前体细胞(NPCs),我们发现 FOXM1 的转基因表达增强,而 siRNA 介导的基因沉默则减少神经球形成,这表明 FOXM1 是 NPC 生长所必需的。在肿瘤发生过程中,FOXM1 的表达随着细胞从 NPC 到前肿瘤祖细胞和 GSCs 的进展而依次增加。抗生素 Siomycin A 与神经干细胞相比,在 GSCs 中更敏感地破坏 MELK 介导的 FOXM1 信号。一线治疗 GBM 的药物替莫唑胺(Temozolomide)治疗,出乎意料地在 GBM 细胞中富集了 FOXM1(+)和 MELK(+)细胞,并且在用 Siomycin A 处理携带 GSC 衍生的颅内肿瘤的小鼠时,添加 Siomycin A 可增强后者的效果。总的来说,我们的数据表明,FOXM1 通过与 MELK 的直接相互作用,以 PLK1 依赖的方式调节 GSCs 中的关键有丝分裂基因,因此,该蛋白复合物是 GBM 的潜在治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88cf/3744761/9c05b61edd7f/stem0031-1051-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验