Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, USA.
J Chem Phys. 2013 Feb 7;138(5):054110. doi: 10.1063/1.4789425.
Mixed quantum/classical (MQC) simulations treat the majority of a system classically and reserve quantum mechanics only for a few degrees of freedom that actively participate in the chemical process(es) of interest. In MQC calculations, the quantum and classical degrees of freedom are coupled together using pseudopotentials. Although most pseudopotentials are developed empirically, there are methods for deriving pseudopotentials using the results of quantum chemistry calculations, which guarantee that the explicitly-treated valence electron wave functions remain orthogonal to the implicitly-treated core electron orbitals. Whether empirical or analytically derived in nature, to date all such pseudopotentials have been subject to the frozen core approximation (FCA) that ignores how changes in the nuclear coordinates alter the core orbitals, which in turn affects the wave function of the valence electrons. In this paper, we present a way to go beyond the FCA by developing pseudopotentials that respond to these changes. In other words, we show how to derive an analytic expression for a pseudopotential that is an explicit function of nuclear coordinates, thus accounting for the polarization effects experienced by atomic cores in different chemical environments. We then use this formalism to develop a coordinate-dependent pseudopotential for the bonding electron of the sodium dimer cation molecule and we show how the analytic representation of this potential can be used in one-electron MQC simulations that provide the accuracy of a fully quantum mechanical Hartree-Fock (HF) calculation at all internuclear separations. We also show that one-electron MQC simulations of Na(2)(+) using our coordinate-dependent pseudopotential provide a significant advantage in accuracy compared to frozen core potentials with no additional computational expense. This is because use of a frozen core potential produces a charge density for the bonding electron of Na(2)(+) that is too localized on the molecule, leading to significant overbinding of the valence electron. This means that FCA calculations are subject to inaccuracies of order ~10% in the calculated bond length and vibrational frequency of the molecule relative to a full HF calculation; these errors are fully corrected by using our coordinate-dependent pseudopotential. Overall, our findings indicate that even for molecules like Na(2)(+), which have a simple electronic structure that might be expected to be well-treated within the FCA, the importance of including the effects of the changing core molecular orbitals on the bonding electrons cannot be overlooked.
混合量子/经典(MQC)模拟将系统的大部分内容处理为经典内容,而仅将量子力学保留给少数积极参与感兴趣的化学过程的自由度。在 MQC 计算中,量子和经典自由度通过赝势耦合在一起。尽管大多数赝势是经验性开发的,但也有使用量子化学计算结果推导出赝势的方法,这保证了明确处理的价电子波函数始终与隐含处理的核心电子轨道正交。无论本质上是经验性的还是分析性的,到目前为止,所有这些赝势都受到了冻结核心近似(FCA)的限制,该近似忽略了核坐标的变化如何改变核心轨道,进而影响价电子的波函数。在本文中,我们通过开发响应这些变化的赝势来超越 FCA。换句话说,我们展示了如何推导出一个赝势的解析表达式,该表达式是核坐标的显式函数,从而解释了不同化学环境中原子核心经历的极化效应。然后,我们使用这种形式主义来为钠离子二聚阳离子分子的成键电子开发一个坐标相关的赝势,并展示如何在单电子 MQC 模拟中使用这种势的解析表示,从而在所有核间分离处提供完全量子力学 Hartree-Fock(HF)计算的准确性。我们还表明,使用我们的坐标相关赝势对 Na(2)(+)进行单电子 MQC 模拟在准确性方面相对于没有额外计算成本的冻结核心势具有显著优势。这是因为使用冻结核心势会导致 Na(2)(+)的成键电子的电荷密度在分子上过于局部化,从而导致价电子的过度结合。这意味着 FCA 计算相对于全 HF 计算,分子的键长和振动频率的计算结果存在约 10%的误差;使用我们的坐标相关赝势可以完全纠正这些错误。总体而言,我们的研究结果表明,即使对于像 Na(2)(+)这样具有简单电子结构的分子,也可能在 FCA 中得到很好的处理,也不能忽略不断变化的核心分子轨道对成键电子的影响。