Suppr超能文献

大分子体系的理论建模。混合量子力学/分子力学计算局部自洽场方法的进展。

Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations.

机构信息

Théorie Modélisation Simulation, Université de Lorraine, SRSMC UMR 7565, Vandœuvre-lès-Nancy F-54506, France.

出版信息

Acc Chem Res. 2013 Feb 19;46(2):596-603. doi: 10.1021/ar300278j. Epub 2012 Dec 18.

Abstract

Molecular mechanics methods can efficiently compute the macroscopic properties of a large molecular system but cannot represent the electronic changes that occur during a chemical reaction or an electronic transition. Quantum mechanical methods can accurately simulate these processes, but they require considerably greater computational resources. Because electronic changes typically occur in a limited part of the system, such as the solute in a molecular solution or the substrate within the active site of enzymatic reactions, researchers can limit the quantum computation to this part of the system. Researchers take into account the influence of the surroundings by embedding this quantum computation into a calculation of the whole system described at the molecular mechanical level, a strategy known as the mixed quantum mechanics/molecular mechanics (QM/MM) approach. The accuracy of this embedding varies according to the types of interactions included, whether they are purely mechanical or classically electrostatic. This embedding can also introduce the induced polarization of the surroundings. The difficulty in QM/MM calculations comes from the splitting of the system into two parts, which requires severing the chemical bonds that link the quantum mechanical subsystem to the classical subsystem. Typically, researchers replace the quantoclassical atoms, those at the boundary between the subsystems, with a monovalent link atom. For example, researchers might add a hydrogen atom when a C-C bond is cut. This Account describes another approach, the Local Self Consistent Field (LSCF), which was developed in our laboratory. LSCF links the quantum mechanical portion of the molecule to the classical portion using a strictly localized bond orbital extracted from a small model molecule for each bond. In this scenario, the quantoclassical atom has an apparent nuclear charge of +1. To achieve correct bond lengths and force constants, we must take into account the inner shell of the atom: for an sp(3) carbon atom, we consider the two core 1s electrons and treat that carbon as an atom with three electrons. This results in an LSCF+3 model. Similarly, a nitrogen atom with a lone pair of electrons available for conjugation is treated as an atom with five electrons (LSCF+5). This approach is particularly well suited to splitting peptide bonds and other bonds that include carbon or nitrogen atoms. To embed the induced polarization within the calculation, researchers must use a polarizable force field. However, because the parameters of the usual force fields include an average of the induction effects, researchers typically can obtain satisfactory results without explicitly introducing the polarization. When considering electronic transitions, researchers must take into account the changes in the electronic polarization. One approach is to simulate the electronic cloud of the surroundings by a continuum whose dielectric constant is equal to the square of the refractive index. This Electronic Response of the Surroundings (ERS) methodology allows researchers to model the changes in induced polarization easily. We illustrate this approach by modeling the electronic absorption of tryptophan in human serum albumin (HSA).

摘要

分子力学方法可以有效地计算大型分子系统的宏观性质,但无法表示化学反应或电子跃迁过程中发生的电子变化。量子力学方法可以准确地模拟这些过程,但需要更大的计算资源。由于电子变化通常发生在系统的有限部分,例如分子溶液中的溶质或酶反应活性部位内的底物,因此研究人员可以将量子计算限制在系统的这一部分。研究人员通过将这种量子计算嵌入到分子力学水平描述的整个系统的计算中,考虑到周围环境的影响,这种策略称为混合量子力学/分子力学(QM/MM)方法。这种嵌入的准确性取决于所包括的相互作用类型,无论是纯机械的还是经典静电的。这种嵌入还可以引入周围的诱导极化。QM/MM 计算的困难来自于将系统分为两部分,这需要切断将量子力学子系统与经典子系统连接起来的化学键。通常,研究人员用单价连接原子代替量子经典原子,这些原子位于子系统之间的边界处。例如,当 C-C 键被切断时,研究人员可能会添加一个氢原子。本账户描述了我们实验室开发的另一种方法,即局部自洽场 (LSCF)。LSCF 使用从每个键的小模型分子中提取的严格局域键轨道将分子的量子力学部分与经典部分连接起来。在这种情况下,量子经典原子的表观核电荷为+1。为了获得正确的键长和力常数,我们必须考虑原子的内壳层:对于 sp(3)碳原子,我们考虑两个核心 1s 电子,并将该碳原子视为具有三个电子的原子。这导致 LSCF+3 模型。类似地,具有可用于共轭的孤对电子的氮原子被视为具有五个电子的原子(LSCF+5)。这种方法特别适合于分裂肽键和其他包含碳或氮原子的键。为了在计算中嵌入诱导极化,研究人员必须使用极化力场。然而,由于通常的力场参数包括感应效应的平均值,因此研究人员通常可以在不明确引入极化的情况下获得满意的结果。在考虑电子跃迁时,研究人员必须考虑电子极化的变化。一种方法是通过介电常数等于折射率平方的连续体来模拟周围环境的电子云。这种周围环境的电子响应 (ERS) 方法允许研究人员轻松地模拟诱导极化的变化。我们通过模拟人血清白蛋白 (HSA) 中色氨酸的电子吸收来说明这种方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验