Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA.
J Phys Condens Matter. 2013 Mar 20;25(11):115303. doi: 10.1088/0953-8984/25/11/115303. Epub 2013 Feb 14.
We study the electronic and magnetic structures of bilayer graphene nanoribbons (BGNRs) beyond the conventional AA and AB stackings, by using density functional theory within both local density and generalized gradient approximations (LDA and GGA). Our results show that, irrespective of the method chosen, stacking arrangements other than the conventional ones are most stable, and result in significant modification of BGNR characteristics. The most stable bilayer armchair and zigzag structures with a width of ~1 nm are semiconducting with band gaps of 0.04 and 0.05 eV, respectively. We show mechanical shift evolution of magnetic states and the emergence of magnetization upon mechanical deformation in bilayer zigzag GNRs. Band gap dependence on mechanical shift can be used to design accurate nanosensors.
我们使用局域密度近似和广义梯度近似下的密度泛函理论研究了双层石墨烯纳米带(BGNRs)的电子和磁结构,超出了传统的 AA 和 AB 堆叠。我们的结果表明,无论选择哪种方法,除了传统堆叠外的堆叠排列最稳定,并导致 BGNR 特性的显著改变。具有~1nm 宽度的最稳定的双层扶手椅和锯齿形结构是半导体,带隙分别为 0.04 和 0.05eV。我们展示了在机械变形过程中双层锯齿形 GNR 中磁态的机械位移演化和磁化的出现。带隙对机械位移的依赖性可用于设计精确的纳米传感器。