Yang Li, Park Cheol-Hwan, Son Young-Woo, Cohen Marvin L, Louie Steven G
Department of Physics, University of California at Berkeley, California 94720, USA.
Phys Rev Lett. 2007 Nov 2;99(18):186801. doi: 10.1103/PhysRevLett.99.186801. Epub 2007 Nov 1.
We present calculations of the quasiparticle energies and band gaps of graphene nanoribbons (GNRs) carried out using a first-principles many-electron Green's function approach within the GW approximation. Because of the quasi-one-dimensional nature of a GNR, electron-electron interaction effects due to the enhanced screened Coulomb interaction and confinement geometry greatly influence the quasiparticle band gap. Compared with previous tight-binding and density functional theory studies, our calculated quasiparticle band gaps show significant self-energy corrections for both armchair and zigzag GNRs, in the range of 0.5-3.0 eV for ribbons of width 2.4-0.4 nm. The quasiparticle band gaps found here suggest that use of GNRs for electronic device components in ambient conditions may be viable.
我们展示了使用GW近似下的第一性原理多电子格林函数方法对石墨烯纳米带(GNRs)的准粒子能量和带隙进行的计算。由于GNR的准一维性质,增强的屏蔽库仑相互作用和限制几何结构引起的电子-电子相互作用效应极大地影响了准粒子带隙。与先前的紧束缚和密度泛函理论研究相比,我们计算的准粒子带隙显示出扶手椅型和锯齿型GNR都有显著的自能修正,对于宽度为2.4 - 0.4 nm的纳米带,修正范围在0.5 - 3.0 eV。这里发现的准粒子带隙表明,在环境条件下将GNR用于电子器件组件可能是可行的。