Doctoral Training Centre, Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, UK.
Eur J Neurosci. 2012 Jul;36(2):2178-87. doi: 10.1111/j.1460-9568.2012.08093.x.
Epileptic seizure activity manifests as complex spatio-temporal dynamics on the clinically relevant macroscopic scale. These dynamics are known to arise from spatially heterogeneous tissue, but the relationship between specific spatial abnormalities and epileptic rhythm generation is not well understood. We formulate a simplified macroscopic modelling framework with which to study the role of spatial heterogeneity in the generation of epileptiform spatio-temporal rhythms. We characterize the overall model dynamics in terms of spontaneous activity and excitability and demonstrate normal and abnormal spreading of activity. We introduce a means to systematically investigate the topology of abnormal sub-networks and explore its impact on spontaneous and stimulus-evoked rhythmic dynamics. This computationally efficient framework complements results from detailed biophysical models, and allows the testing of specific hypotheses about epileptic dynamics on the macroscopic scale.
癫痫发作活动在临床上相关的宏观尺度上表现出复杂的时空动态。这些动态已知是由空间异质组织引起的,但特定空间异常与癫痫节律产生之间的关系尚不清楚。我们提出了一个简化的宏观建模框架,用于研究空间异质性在癫痫时空节律产生中的作用。我们根据自发性活动和兴奋性来描述整体模型动态,并演示了活动的正常和异常传播。我们引入了一种系统地研究异常子网拓扑的方法,并探讨了其对自发性和刺激诱发节律动态的影响。这个计算效率高的框架补充了详细生物物理模型的结果,并允许在宏观尺度上测试关于癫痫动态的具体假设。