Suppr超能文献

香豆素类抗真菌药物的正向建模;基于表面等离子体共振/构效关系的视角

Forward Modeling of the Coumarin Antifungals; SPR/SAR Based Perspective.

作者信息

Soltani Saeed, Dianat Shima, Sardari Soroush

机构信息

Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.

出版信息

Avicenna J Med Biotechnol. 2009 Jul;1(2):95-103.

Abstract

Although, coumarins are a group of compounds which are naturally found in some plants, they can be synthetically produced as well. Because of their diverse derivatives, origin and properties most of them can be used for medicinal purposes. For example, they can be used against fungal diseases or in studying structure and biological properties of antifungal agents to discover new compounds with the similar activity. A Structure Property/Activity Relationship (SAR) can be utilized in prediction of biological activity of desired molecules.In order to represent a relationship between the physicochemical properties of coumarin compounds and their biological activities, 68 coumarins and coumarin derivatives with already reported antifungal activities were selected and eleven attributes were generated. The descriptors were used to perform artificial neural network (ANN) and to build a model for predicting effectiveness of the new ones. The correlation coefficient between the experimental and the predicted MIC values pertaining to all the coumarins was 0.984. This study paves the way for further researches about antifungal activity of coumarins, and offers a powerful tool in modeling and prediction of their bioactivities.

摘要

虽然香豆素是一类天然存在于某些植物中的化合物,但它们也可以通过合成方法制备。由于其多样的衍生物、来源和性质,它们中的大多数可用于药用。例如,它们可用于对抗真菌疾病,或用于研究抗真菌剂的结构和生物学特性,以发现具有类似活性的新化合物。结构性质/活性关系(SAR)可用于预测所需分子的生物活性。为了表示香豆素化合物的物理化学性质与其生物活性之间的关系,选择了68种已报道具有抗真菌活性的香豆素和香豆素衍生物,并生成了11个属性。这些描述符用于执行人工神经网络(ANN),并建立一个预测新化合物有效性的模型。所有香豆素的实验MIC值与预测MIC值之间的相关系数为0.984。本研究为进一步研究香豆素的抗真菌活性铺平了道路,并为其生物活性的建模和预测提供了一个强大的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4031/3558124/d11d39d56a7d/AJMB-1-95-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验