Suppr超能文献

人工神经网络(ANN)建模在预测重症患者药代动力学参数中的临床应用。

Clinical application of artificial neural network (ANN) modeling to predict pharmacokinetic parameters of severely ill patients.

作者信息

Yamamura Shigeo

机构信息

School of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan.

出版信息

Adv Drug Deliv Rev. 2003 Sep 12;55(9):1233-51. doi: 10.1016/s0169-409x(03)00121-2.

Abstract

Artificial neural network (ANN) modeling was used to evaluate the pharmacokinetics of aminoglycosides (arbekacin sulfate and amikacin sulfate) in severely ill patients. The plasma level was predicted by ANN modeling using parameters related to the severity of the patient's condition and the predictive performance was shown to be better than could be achieved using multiple regression analysis. These results indicate that there is a non-linear relationship between the pharmacokinetics of aminoglycosides and the severity of the patient's condition, and this should be taken into account when determining the dose for severely ill patients. Patients whose plasma levels are likely to fall below the effective level can be identified by ANN modeling with a predictive sensitivity and specificity superior to multivariate logistic regression analysis. The predictable range should be inferred from the data structure before the modeling in order to improve the predictive performance. The volume of distribution (Vd) in the normal range was weakly predicted by ANN modeling from the patients' data. Prediction of clearance by ANN modeling was poorer than that obtained from serum creatinine concentration by linear regression analysis. These results suggest that the input-output relationship (linear or non-linear) should be taken into account in selecting the modeling method. Linear modeling can give better predictive performance for linear systems and non-linear modeling can give better predictive performance for non-linear systems. In general, the performance of ANN modeling was superior to linear modeling for PK/PD prediction. For accurate modeling, a predictable range should be inferred from the data structure before the analysis. Restriction of the predictable region, as determined from the data structure, produced an increase in prediction performance. When applying ANN modeling in clinical settings, the predictive performance and predictable region should be investigated in detail to avoid the risk of harm to severely ill patients.

摘要

人工神经网络(ANN)建模被用于评估危重症患者中氨基糖苷类药物(硫酸阿贝卡星和硫酸阿米卡星)的药代动力学。通过使用与患者病情严重程度相关的参数,利用ANN建模预测血浆水平,结果显示其预测性能优于多元回归分析。这些结果表明,氨基糖苷类药物的药代动力学与患者病情严重程度之间存在非线性关系,在确定危重症患者的剂量时应予以考虑。血浆水平可能低于有效水平的患者可通过ANN建模识别,其预测敏感性和特异性优于多变量逻辑回归分析。为了提高预测性能,应在建模前根据数据结构推断可预测范围。从患者数据通过ANN建模对正常范围内的分布容积(Vd)预测较弱。通过ANN建模对清除率的预测不如通过线性回归分析从血清肌酐浓度获得的预测效果好。这些结果表明,在选择建模方法时应考虑输入-输出关系(线性或非线性)。线性建模对线性系统可提供更好的预测性能,非线性建模对非线性系统可提供更好的预测性能。一般来说,在PK/PD预测方面,ANN建模的性能优于线性建模。为了进行准确建模,应在分析前根据数据结构推断可预测范围。根据数据结构确定的可预测区域的限制可提高预测性能。在临床环境中应用ANN建模时,应详细研究预测性能和可预测区域,以避免对危重症患者造成伤害的风险。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验